Hostname: page-component-5b777bbd6c-v47t2 Total loading time: 0 Render date: 2025-06-18T11:10:56.446Z Has data issue: false hasContentIssue false

Inter-reconfigurable robot by modified informed sampling-based shortest path planning in cleaning and maintenance

Published online by Cambridge University Press:  19 May 2025

Anh Vu Le*
Affiliation:
Advanced Intelligent Technology Research Group, Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam
Cong Hien Dinh
Affiliation:
Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam
Vinu Sivanantham
Affiliation:
ROAR Lab, Engineering Product Development, Singapore University of Technology and Design, Singapore
Prabakaran Veerajagadheswar
Affiliation:
ROAR Lab, Engineering Product Development, Singapore University of Technology and Design, Singapore
Do Quang Huy
Affiliation:
Computational Mechanics, Institute of Mechanics Faculty of Mechanical Engineering, Otto von Guericke University, Germany
Bui Vu Minh
Affiliation:
Faculty of Engineering and Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
Guangming Chen
Affiliation:
College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
Rajesh Elara Mohan
Affiliation:
ROAR Lab, Engineering Product Development, Singapore University of Technology and Design, Singapore
*
Corresponding author. Anh Vu Le; Email: leanhvu@tdtu.edu.vn

Abstract

Connecting individual robots to form an inter-reconfigurable system with a flexible base size enhances the ability to access and cover areas for cleaning and maintenance tasks. Given that increased configuration complexity expands the search space dimension, an optimal routing solution ensuring efficiency is essential. In this paper, we present an inter-reconfigurable multi-robot system capable of adjusting the bases of its two units, along with an optimal path planning approach for confined spaces based on a modified informed rapidly-exploring random tree algorithm by a greedy set (RIRRT*). We validate the navigation of the proposed inter-reconfigurable platform using RIRRT* for four informed dimensional search spaces as a case study in both simulated and real-world environments. The proposed path planning method for the inter-reconfigurable system outperformed conventional strategies, achieving significant reduction in both execution time and energy utilization.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Javaid, M., Haleem, A., Singh, R. P. and Suman, R., “Substantial capabilities of robotics in enhancing industry 4.0 implementation,” Cogn. Robot. 1, 5875 (2021).CrossRefGoogle Scholar
Hong, R.-J., Li, Y.-R., Hung, M.-H., Chang, J.-W. and Hung, J. C.. “Integrating Object Detection and Semantic Segmentation into Automated Pallet Forking and Picking System in AGV.” In: International Conference on Frontier Computing (Springer, 2022) pp. 121129.CrossRefGoogle Scholar
Karabegović, I., Karabegović, E., Mahmić, M. and Husak, E., “The application of service robots for logistics in manufacturing processes,” Adv. Prod. Eng. Manage. 10(4), 185194 (2015).Google Scholar
Tubis, A. A. and Poturaj, H., “Challenges in the implementation of autonomous robots in the process of feeding materials on the production line as part of logistics 4.0,” Logforum 17(3), 411423 (2021).CrossRefGoogle Scholar
Le, A. V., Ramalingam, B., Gomez, B. F., Mohan, R. E., Minh, T. H. Q. and Sivanantham, V., “Social density monitoring toward selective cleaning by human support robot with 3D based perception system,” IEEE Access 9, 4140741416 (2021).Google Scholar
Le, A. V., Veerajagadheswar, P., Kyaw, P. T., Elara, M. R. and Nhan, N. H. K., “Coverage path planning using reinforcement learning-based tsp for htetran—a polyabolo-inspired self-reconfigurable tiling robot,” Sensors 21(8), 2577 (2021).CrossRefGoogle ScholarPubMed
Le, A. V., Parween, R., Kyaw, P. T., Mohan, R. E., Minh, T. H. Q. and Borusu, C. S. C. S., “Reinforcement learning-based energy-aware area coverage for reconfigurable hrombo tiling robot,” IEEE Access 8, 209750209761 (2020).CrossRefGoogle Scholar
Gammell, J. D., Barfoot, T. D. and Srinivasa, S. S., “Informed sampling for asymptotically optimal path planning,” IEEE Trans. Robot. 34(4), 966984 (2018).CrossRefGoogle Scholar
Yi, L., Le, A. V., Hayat, A. A., Borusu, C. S. C. S., Mohan, R. E., Nhan, N. H. K. and Kandasamy, P., “Reconfiguration during locomotion by pavement sweeping robot with feedback control from vision system,” IEEE Access 8, 113355113370 (2020).CrossRefGoogle Scholar
Muthugala, M. A., Le, A. V., Cruz, E. S., Elara, M. R., Veerajagadheswar, P. and Kumar, M., “A self-organizing fuzzy logic classifier for benchmarking robot-aided blasting of ship hulls,” Sensors 20(11), 3215 (2020).CrossRefGoogle ScholarPubMed
Prabakaran, V., Le, A. V., Kyaw, P. T., Mohan, R. E., Kandasamy, P., Nguyen, T. N. and Kannan, M., “Hornbill: A self-evaluating hydro-blasting reconfigurable robot for ship hull maintenance,” IEEE Access 8, 193790193800 (2020).CrossRefGoogle Scholar
Le, A. V., Kyaw, P. T., Mohan, R. E., Swe, S. H. M., Rajendran, A., Boopathi, K. and Nhan, N. H. K., “Autonomous floor and staircase cleaning framework by reconfigurable stetro robot with perception sensors,” J. Intell. Robot. Syst. 101(1), 119 (2021).CrossRefGoogle Scholar
Cheng, K. P., Mohan, R. E., Nhan, N. H. K. and Le, A. V., “Multi-objective genetic algorithm-based autonomous path planning for hinged-tetro reconfigurable tiling robot,” IEEE Access 8, 121267121284 (2020).CrossRefGoogle Scholar
Le, A. V., Hayat, A. A., Elara, M. R., Nhan, N. H. K. and Prathap, K., “Reconfigurable pavement sweeping robot and pedestrian cohabitant framework by vision techniques,” IEEE Access 7, 159402159414 (2019).CrossRefGoogle Scholar
Le, A. V., Prabakaran, V., Sivanantham, V. and Mohan, R. E., “Modified a-star algorithm for efficient coverage path planning in tetris inspired self-reconfigurable robot with integrated laser sensor,” Sensors 18(8), 2585 (2018).CrossRefGoogle ScholarPubMed
Tan, N., Mohan, R. E. and Elangovan, K., “Scorpio: A biomimetic reconfigurable rolling–crawling robot,” Int. J. Adv. Robot. Syst. 13(5), 1729881416658180 (2016).CrossRefGoogle Scholar
Nansai, S., Rojas, N., Elara, M. R. and Sosa, R.. “Exploration of Adaptive Gait Patterns with a Reconfigurable Linkage Mechanism.” In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2013) pp. 46614668.CrossRefGoogle Scholar
Vo, D. T., Le, A. V., Ta, T. D., Tran, M., Van Duc, P., Vu, M. B. and Nhan, N. H. K., “Toward complete coverage planning using deep reinforcement learning by trapezoid-based transformable robot,” Eng. Appl. Artif. Intel. 122, 105999 (2023).CrossRefGoogle Scholar
Yi, L., Wan, A. Y. S., Le, A. V., Abdullah Aamir Hayat, Q. R. T. and Mohan, R. E., “Complete coverage path planning for reconfigurable omni-directional mobile robots with varying width using gbnn (n),” Expert Syst. Appl. 228, 120349 (2023).CrossRefGoogle Scholar
Do, H., Le, A. V., Yi, L., Hoong, J. C. C., Tran, M., Van Duc, P., Vu, M. B., Weeger, O. and Mohan, R. E., “Heat conduction combined grid-based optimization method for reconfigurable pavement sweeping robot path planning,” Robot. Auton. Syst. 152, 104063 (2022).CrossRefGoogle Scholar
Le, A. V., Vo, D. T., Dat, N. T., Vu, M. B. and Elara, M. R., “Complete coverage planning using deep reinforcement learning for polyiamonds-based reconfigurable robot,” Eng. Appl. Artif. Intel. 138, 109424 (2024).CrossRefGoogle Scholar
Le, A. V., Parween, R., Mohan, R. E., Nhan, N. H. K. and Enjikalayil, R., “Optimization complete area coverage by reconfigurable htrihex tiling robot,” Sensors 20(11), 3170 (2020).CrossRefGoogle ScholarPubMed
Prabakaran, V., Le, A. V., Kyaw, P. T., Kandasamy, P., Paing, A. and Mohan, R. E., “sTetro-D: A deep learning based autonomous descending-stair cleaning robot,” Eng. Appl. Artif. Intel. 120, 105844 (2023).CrossRefGoogle Scholar
Le, A. V., Pamela, T. L. A., Hayat, A. A., Nair, B. R., Kyaw, P. T., Vu, M. B., Vo, D. T. and Elara, M. R., “Towards staircase navigation and maintenance using self-reconfigurable service robot,” Expert Syst. Appl. 266, 125969 (2025).CrossRefGoogle Scholar
Kee, V., Rojas, N., Elara, M. R. and Sosa, R.. “Hinged-tetro: A Self-reconfigurable Module for Nested Reconfiguration.” In: 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (IEEE, 2014) pp. 15391546.Google Scholar
Khairuddin, A. R., Talib, M. S. and Haron, H.. “Review on Simultaneous Localization and Mapping (slam).” In: 2015 IEEE International Conference on Control System, Computing and Engineering (ICCSCE) (IEEE, 2015) pp. 8590.CrossRefGoogle Scholar
Smith, R., Self, M. and Cheeseman, P., “Estimating Uncertain Spatial Relationships in Robotics,” In: Autonomous Robot Vehicles (Springer, 1990) pp. 167193.CrossRefGoogle Scholar
Li, C., Wang, S., Zhuang, Y. and Yan, F., “Deep sensor fusion between 2D laser scanner and imu for mobile robot localization,” IEEE Sens. J. 21(6), 85018509 (2019).CrossRefGoogle Scholar
Lee, T.-K., Baek, S.-H., Choi, Y.-H. and Oh, S.-Y., “Smooth coverage path planning and control of mobile robots based on high-resolution grid map representation,” Robot. Auton. Syst. 59(10), 801812 (2011).CrossRefGoogle Scholar
Bhattacharya, P. and Gavrilova, M. L.. “Voronoi Diagram in Optimal Path Planning.” In: 4th International Symposium on Voronoi Diagrams in Science and Engineering (ISVD 2007) (IEEE, 2007) pp. 3847.CrossRefGoogle Scholar
Skiena, S.. Dijkstra’s algorithm. In: Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica (Addison-Wesley, Reading, MA, 1990) pp. 225227.Google Scholar
Hart, P. E., Nilsson, N. J. and Raphael, B., “A formal basis for the heuristic determination of minimum cost paths,” IEEE Trans. Syst. Sci. Cybern. 4(2), 100107 (1968).CrossRefGoogle Scholar
Dhouib, S., “An optimal method for the shortest path problem: The dhouib-matrix-spp (dm-spp),” Results Control Optimiz. 12, 100269 (2023).CrossRefGoogle Scholar
Dhouib, S., “Enhanced Path Planning with dm-spp-24 and dm-spp-4: A Comparative Study,” In: Advances in Transdisciplinary Engineering (2023).Google Scholar
Dhouib, S., “Faster than Dijkstra and a* Methods for the Mobile Robot Path Planning Problem Using Four Movement Directions: The Dhouib-Matrix-spp-4,” In: Mechatronics and Automation Technology (IOS Press, 2024) pp. 284290.Google Scholar
Kavraki, L. E., Petr Svestka, J.-C. L. and Overmars, M. H., “Probabilistic roadmaps for path planning in high-dimensional configuration spaces,” IEEE Trans. Robot. Autom. 12(4), 566580 (1996).CrossRefGoogle Scholar
LaValle, S. M. and Kuffner, J. J. Jr, “Randomized kinodynamic planning,” Int J. Robot. Res. 20(5), 378400 (2001).CrossRefGoogle Scholar
Edsger, W. and Dijkstra, etal, “A note on two problems in connexion with graphs,” Numer. Math. 1(1), 269271 (1959).Google Scholar
Karaman, S. and Frazzoli, E., “Sampling-based algorithms for optimal motion planning,” Int J. Robot. Res. 30(7), 846894 (2011).CrossRefGoogle Scholar
Gammell, J. D., Srinivasa, S. S. and Barfoot, T. D.. “Batch Informed Trees (bit*): Sampling-based Optimal Planning Via the Heuristically Guided Search of Implicit Random Geometric Graphs.” In: 2015 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2015) pp. 30673074.Google Scholar
Shahabi, M., Ghariblu, H. and Beschi, M., “Comparison of different sample-based motion planning methods in redundant robotic manipulators,” Robotica 40(9), 31043119 (2022).CrossRefGoogle Scholar
Dong, L., Zhang, R., Wang, J., Li, J., Wang, S. and Wang, X., “Research on the path planning algorithm and obstacle-crossing motion planning strategy for a cable trench inspection robot,” Robotica, 116 (2024).CrossRefGoogle Scholar
Gao, G., Li, D., Liu, K., Ge, Y. and Song, C., “A study on path-planning algorithm for a multi-section continuum robot in confined multi-obstacle environments,” Robotica 42(10), 124 (2024).CrossRefGoogle Scholar
Taheri, H., Qiao, B. and Ghaeminezhad, N., “Kinematic model of a four mecanum wheeled mobile robot,” Int. J. Comput. Appl. 113(3), 69 (2015).Google Scholar
Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R. and Ng, A. Y., “Ros: An Open-Source Robot Operating System,” In: ICRA Workshop on Open Source Software. vol. 3 (2009) pp. 5. Google Scholar
Kyaw, P. T., Le, A. V., Veerajagadheswar, P., Elara, M. R., Thu, T. T., Nhan, N. H. K., Duc, P. V., and Vu, M. B., “Energy-Efficient path planning of reconfigurable robots in complex environments," IEEE Trans. Robot. 38(4), 2481-2494 (2022).CrossRefGoogle Scholar
Sriniketh, K., Le, A. V., Mohan, R. E., Sheu, B. J., Tung, V. D., Van Duc, P. and Vu, M. B., “Robot-aided human evacuation optimal path planning for fire drill in buildings,” J. Build. Eng. 72, 106512 (2023).CrossRefGoogle Scholar
Koide, K., Miura, J. and Menegatti, E., “A portable 3d lidar-based system for long-term and wide-area people behavior measurement,” IEEE Trans. Hum. Mach. Syst. (2018).Google Scholar
Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C. and Burgard, W., “OctoMap: An efficient probabilistic 3D mapping framework based on octrees,” Auton. Robot. 34(3), 189206 (2013). http://github.com/OctoMap/octomap.CrossRefGoogle Scholar
Supplementary material: File

Le et al. supplementary material

Le et al. supplementary material
Download Le et al. supplementary material(File)
File 9.7 MB