Hostname: page-component-65b85459fc-cljkw Total loading time: 0 Render date: 2025-10-19T06:00:29.065Z Has data issue: false hasContentIssue false

Kinematic calibration and accuracy study of a 5-degrees-of-freedom hybrid polishing robot

Published online by Cambridge University Press:  17 October 2025

Bo Sun
Affiliation:
School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, China
Mingyang Qin
Affiliation:
School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, China
Yaolin Jiang
Affiliation:
School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, China
Gang Cheng*
Affiliation:
School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, China
*
Corresponding author: Gang Cheng; Email: chg@cumt.edu.cn

Abstract

An improved identification algorithm is adopted to calibrate the kinematic parameters of the serial-parallel robot, which improves the motion accuracy of the end-effector. Firstly, a kinematic model of the serial-parallel robot is constructed based on the closed-loop vector method. Secondly, a kinematic error model is established by combining geometric error analysis with the vector differential method. Then, with the effective separation of compensable and non-compensable error sources, an identification model of kinematic parameters is constructed. Finally, an improved pivot element weighted iterative algorithm is used to identify the geometric error parameters. Through actual pose measurement, MATLAB is used to simulate the calibration process. The simulation and experimental results show that after kinematic calibration, compared with the traditional least squares method, the improved identification algorithm can significantly reduce the end-effector pose error of the serial-parallel robot, thus effectively improving the motion accuracy of the end-effector.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Zhao, Y. Q., Mei, J. P., Jin, Y. and Niu, W. T., “A new hierarchical approach for the optimal design of a 5-dof hybrid serial-parallel kinematic machine,” Mech. Mach. Theory 56, 119 (2021). doi: 10.1016/j.mechmachtheory.2020.104160.Google Scholar
Zhang, D. S., Xu, Y. D., Yao, J. T., Hu, B. and Zhao, Y. S., “Kinematics, dynamics and stiffness analysis of a novel 3-DOF kinematically/actuation redundant planar parallel mechanism,” Mech. Mach. Theory 116, 203219 (2017).10.1016/j.mechmachtheory.2017.04.011CrossRefGoogle Scholar
Li, B., Li, Y. M. and Zhao, X. H., “Kinematics analysis of a novel over-constrained three degree-of-freedom spatial parallel manipulator,” Mech. Mach. Theory 104, 222233 (2016).10.1016/j.mechmachtheory.2016.06.003CrossRefGoogle Scholar
Liu, J. S., He, Y., Yang, J. T., Cao, W. J. and Wu, X. Y., “Design and analysis of a novel 12-DOF self-balancing lower extremity exoskeleton for walking assistance,” Mech. Mach. Theory 167, 118 (2021). doi: 10.1016/j.mechmachtheory.2021.104519.Google Scholar
Wang, Z. S., Li, Y. B. A., Sun, P., Luo, Y. Q., Chen, B. and Zhu, W. T., “A multi-objective approach for the trajectory planning of a 7-DOF serial-parallel hybrid humanoid arm,” Mech. Mach. Theory 1–22 (2021). doi: 10.1016/j.mechmachtheory.2021.104423.Google Scholar
Li, Y. B., Wang, L., Chen, B., Wang, Z. S., Sun, P., Zheng, H., Xu, T. T. and Qin, S. Y., “Optimization of dynamic load distribution of a serial-parallel hybrid humanoid arm,” Mech. Mach. Theory 1–19 (2021). doi: 10.1016/j.mechmachtheory.2020.103792.Google Scholar
Guo, F., Cheng, G., Wang, S. L. and Li, J., “Rigid-flexible coupling dynamics analysis with joint clearance for a 5-DOF hybrid polishing robot,” Robotica 40(7), 21682188 (2022).10.1017/S0263574721001594CrossRefGoogle Scholar
Wu, J., Wang, X. J., Zhang, B. B. and Huang, T., “Multi-objective optimal design of a novel 6-DOF spray-painting robot,” Robotica 39(12), 22682282 (2021).10.1017/S026357472100031XCrossRefGoogle Scholar
Xu, Y. D., Yang, F., Xu, Z. H., Yao, J. T., Zhou, Y. L. and Zhao, Y. S., “TriRhino: A five-degrees-of-freedom of hybrid serial-parallel manipulator with all rotating axes being continuous: Stiffness analysis and experiments,” J. Mech. Robot 13, 18 (2021). doi: 10.1115/1.4049192.CrossRefGoogle Scholar
Zhang, W. J., Shi, Z. K., Chai, X. X. and Ding, Y., “An efficient kinematic calibration method for parallel robots with compact Multi-degrees-of-freedom joint models,” J. Mech. Robot 16, 118 (2024). doi: 10.1115/1.4064637.CrossRefGoogle Scholar
Wu, H. Y., Kong, L. Y., Li, Q. C., Wang, H. and Chen, G. L., “A comparative study on kinematic calibration for a 3-DOF parallel manipulator using the complete-minimal, inverse-kinematic and geometric-constraint error models,” Chin. J. Mech. Eng.-Eng 36, 125 (2023). doi: 10.1186/s10033-023-00940-3.Google Scholar
Santolaria, J., Conte, J. and Ginés, M., “Laser tracker-based kinematic parameter calibration of industrial robots by improved CPA method and active retroreflector,” Int. J. Adv. Manuf. Tech 66(9-12), 20872106 (2013).10.1007/s00170-012-4484-6CrossRefGoogle Scholar
Guo, R. Y., Wang, J. Y., Hu, H. H., Zhang, J. and Yang, F. F., “Extending screw theory for analysing mechanisms incorporating higher kinematic pairs,” Robotica 43(5), 18411866 (2025).10.1017/S0263574725000669CrossRefGoogle Scholar
Yang, C., Lu, W. Z. and Xia, Y. Q., “Positioning accuracy analysis of industrial robots based on non-probabilistic time-dependent reliability,” IEEE Trans. Reliab 73(1), 608621 (2024).10.1109/TR.2023.3292089CrossRefGoogle Scholar
Feng, H. B., Yan, J. Q., Jin, Z. L. and Chen, Z. M., “Study on calibration of 3-PR(4R)R three-degree-of-freedom parallel mechanism,” IEEE Access 10, 3939739406 (2022).10.1109/ACCESS.2022.3166629CrossRefGoogle Scholar
Shen, Y. F., Tang, T. F., Ye, W. and Zhang, J., “Geometric error modeling and source error identification methodology for a serial-parallel hybrid kinematic machining unit with five axis,” Robotica 43(2), 561581 (2025).10.1017/S0263574724002054CrossRefGoogle Scholar
Wang, X. H., Sun, S., Wu, M. L., Cao, Y. R., Guo, Z. Y. and Liu, Z. F., “Kinematic calibration of a 5-DOF double-driven parallel mechanism with sub-closed loop on limbs,” Robotica 42(11), 37093730 (2024).10.1017/S0263574724001607CrossRefGoogle Scholar
Drouet, P., Dubowsky, S., Zeghloul, S. and Mavroidis, C., “Compensation of geometric and elastic errors in large manipulators with an application to a high accuracy medical system,” Robotica 20, 341352 (2002).10.1017/S0263574702004058CrossRefGoogle Scholar
Urrea, C. and Pascal, J., “Design, simulation, comparison and evaluation of parameter identification methods for an industrial robot,” Comput. Electr. Eng 67, 791806 (2018).10.1016/j.compeleceng.2016.09.004CrossRefGoogle Scholar
Hoang, M. T. and Wu, Y. R., “Error compensation method for milling single-threaded screw rotors with end mill tools,” Mech. Mach. Theory 157, 115 (2021). doi: 10.1016/j.mechmachtheory.2020.104170.CrossRefGoogle Scholar
Qi, J. D., Chen, B. and Zhang, D. H., “A calibration method for enhancing robot accuracy through integration of kinematic model and spatial interpolation algorithm,” J. Mech. Robot 13, 110 (2021). doi: 10.1115/1.4051061.CrossRefGoogle Scholar
Ma, L., Bazzoli, P., Sammons, P. M., Landers, R. G. and Bristow, D. A., “Modeling and calibration of high-order joint-dependent kinematic errors for industrial robots,” Robot. Cim.-INT Manuf 50, 153167 (2018).10.1016/j.rcim.2017.09.006CrossRefGoogle Scholar
Luo, R. Q., Gao, W. B., Huang, Q. and Zhang, Y., “An improved minimal error model for the robotic kinematic calibration based on the POE formula,” Robotica 40(5), 16071626 (2022).10.1017/S0263574721001284CrossRefGoogle Scholar
Huang, Y. J., Ke, J. H., Zhang, X. M. and Ota, J., “Dynamic parameter identification of serial robots using a hybrid approach,” IEEE Trans. Robot 39(2), 16071621 (2023).10.1109/TRO.2022.3211194CrossRefGoogle Scholar
Liu, Y. Z., Wu, J., Wang, L. P. and Wang, J. S., “Parameter identification algorithm of kinematic calibration in parallel manipulators,” Adv. Mech. Eng 8, 117 (2016). doi: 10.1177/1687814016667908.CrossRefGoogle Scholar
Tang, L. and Li, P. F., “A pivot element weighting iterative method for solving ill-conditioned linear equations,” Science Technology and Engineering 12, 381383 (2012).Google Scholar