Hostname: page-component-74d7c59bfc-56bg9 Total loading time: 0 Render date: 2026-02-07T00:56:47.475Z Has data issue: false hasContentIssue false

Load-adaptive control for quadruped mobile manipulation platforms

Published online by Cambridge University Press:  02 February 2026

Zeyu Cai
Affiliation:
School of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
Ruipeng Cai
Affiliation:
School of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
Zhentao Xie
Affiliation:
School of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
Ning Huang
Affiliation:
School of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
Qinchuan Li*
Affiliation:
School of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
*
Corresponding Author: Qinchuan Li; Email: lqchuan@zstu.edu.cn

Abstract

Currently, quadruped robots are widely used in diverse scenarios due to their high mobility, creating a demand for more advanced interaction capabilities. This study proposes a whole-body planning and control framework that integrates adaptive control into a hierarchical model predictive control (MPC) and whole-body control (WBC) structure, enhancing the environmental adaptability and interaction performance of quadruped mobile manipulators. Key innovations include: a recursive least squares and feedforward compensation strategy for accurate end-effector force estimation; relaxed barrier functions embedded in the MPC to combine dynamic obstacle avoidance with adaptive control; and a WBC-based priority hierarchy to enforce critical constraints. Validated in Gazebo simulation and on the B1-Z1 platform, the method allows the robot to handle unknown loads up to 3 kg and maintain tracking errors under 2 cm despite 35 N external disturbances. It also demonstrates strong adaptability in non-uniform object transportation, providing a reliable solution for unstructured environments.

Information

Type
Research Article
Copyright
© The Author(s), 2026. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ferrolho, H., Ivan, V., Merkt, W., Havoutis, I. and Vijayakumar, S., “RoLoMa: Robust loco-manipulation for quadruped robots with arms,” Auton Robot 47, 14631481 (2023).10.1007/s10514-023-10146-0CrossRefGoogle Scholar
Zimmermann, S., Poranne, R. and Coros, S.. Go Fetch! – Dynamic Grasps using Boston Dynamics Spot with External Robotic Arm. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China (2021) pp. 44884494.Google Scholar
Bellicoso, C. D., Krämer, K., Stäuble, M., Sako, D., Jenelten, F., Bjelonic, M. and Hutter, M.. ALMA-Articulated Locomotion and Manipulation for a Torque-Controllable Robot. In: IEEE International Conference on Robotics and Automation (ICRA) IEEE (2019) pp. 84778483.Google Scholar
Turrisi, G., Schulze, L., Medeiros, V. S., Semini, C. and Barasuol, V., PACC: A passive-arm approach for high-payload collaborative carrying with quadruped robots using model predictive control. In: Proc. IEEE Int. Conf. Intell. Robots Syst (2024) pp. 1113911146.Google Scholar
Jenelten, F., He, J., Farshidian, F. and Hutter, M., “DTC: Deep tracking control,” Sci. Robot 9, eadh5401 (2024).10.1126/scirobotics.adh5401CrossRefGoogle ScholarPubMed
Dynamics, B., “Spot for safety and incident response,” Youtube (2024). https://bostondynamics.com/solutions/safety.Google Scholar
Sun, Z.-H., Yang, G. S., Zhang, B. and Zhang, W.-J.. “On the Concept of the Resilient Machine,” In: 2011 6th IEEE Conference on Industrial Electronics and Applications, Beijing, China (2011) pp. 357360.Google Scholar
Di Carlo, J., Wensing, P. M., Katz, B., Bledt, G. and Kim, S.. Dynamic Locomotion in the MIT Cheetah 3 Through Convex Model-Predictive Control. In: Proc. IEEE Int. Conf. Intell. Robots Syst (2018) pp. 74407447.Google Scholar
Nguyen, Q., Powell, M. J., Katz, B., Carlo, J. D. and Kim, S.. Optimized Jumping on the MIT Cheetah 3 Robot. In: Proc. IEEE Int. Conf. Robot. Automat. (2019) pp. 74487454.Google Scholar
Focchi, M., del Prete, A., Havoutis, I., Featherstone, R., Caldwell, D. G. and Semini, C., “High-slope terrain locomotion for torque-controlled quadruped robots,” Auton. Robots 41(1), 259272 (2017).10.1007/s10514-016-9573-1CrossRefGoogle Scholar
Park, H. W., Wensing, P. M. and Kim, S., “Online planning for autonomous running jumps over obstacles in high-speed quadrupeds, Proc,” Robot.: Sci. Syst 11, 19 (2015).Google Scholar
Park, H. W., Wensing, P. M. and Kim, S., “High-speed bounding with the MIT Cheetah 2: Control design and experiments,” Int. J. Robot. Res. 36(2), 167192 (2017).10.1177/0278364917694244CrossRefGoogle Scholar
Hadian, M., Zhang, W. J. and Etesami, D., “A robust interpolated model predictive control based on recurrent neural networks for a nonholonomic differential-drive mobile robot with quasi-LPV representation: Computational complexity and conservatism,” Int. J. Syst. Sci. 55(15), 32573271 (2024).10.1080/00207721.2024.2367711CrossRefGoogle Scholar
Katayama, S. and Ohtsuka, T., “Whole-body model predictive control with rigid contacts via online switching time optimization,” In: Proc. IEEE Int. Conf. Intell. Robots Syst (2022) pp. 8858–8865.Google Scholar
Mastalli, C., Chhatoi, S. P., Corbéres, T., Tonneau, S. and Vijayakumar, S., “Inverse-dynamics mpc via nullspace resolution,” IEEE Trans. on Robot. 39(4), 32223241 (2023).10.1109/TRO.2023.3262186CrossRefGoogle Scholar
Khatib, O., “A unified approach for motion and force control of robot manipulators: The operational space formulation,” IEEE J. Robot. Automat. 3(1), 4353 (1987).10.1109/JRA.1987.1087068CrossRefGoogle Scholar
Kuindersma, S., Permenter, F. and Tedrake, R., “An efficiently solvable quadratic program for stabilizing dynamic locomotion,” In: IEEE International Conference on Robotics and Automation (ICRA) IEEE (2014) pp. 2589–2594.Google Scholar
Bellicoso, C. D., Gehring, C., Hwangbo, J., Fankhauser, P. and Hutter, M.. Perception-less terrain adaptation through whole body control and hierarchical optimization. In: Proc. 16th IEEE-RAS Int. Conf. Humanoid Robots, Humanoids (2016) pp. 558564.Google Scholar
Grandia, R., Jenelten, F., Yang, S., Farshidian, F. and Hutter, M., “Perceptive locomotion through nonlinear model-predictive control,” IEEE Trans. Robot. 39(5), 34023421 (2023).10.1109/TRO.2023.3275384CrossRefGoogle Scholar
Flayols, T., Prete, A. D., Wensing, P., Mifsud, A., Benallegue, M. and Stasse, O., “Experimental Evaluation of Simple Estimators for Humanoid Robots,” In: IEEE-RAS Int. Conf. Humanoid Robot (2017) pp. 889895.Google Scholar
Sleiman, J.-P., Farshidian, F., Minniti, M. V. and Hutter, M., “A unified mpc framework for whole-body dynamic locomotion and manipulation,” IEEE Robot. Autom. Lett. 6(3), 46884695 (2021).10.1109/LRA.2021.3068908CrossRefGoogle Scholar
Unitree, Z1 SDK Development Guide. [Online]. https://support.unitree.com/home/en/Z1_developer/param.Google Scholar
Bellicoso, C. D., Gehring, C., Hwangbo, J., Fankhauser, P. and Hutter, M.. “Perception-Less Terrain Adaptation Through Whole Body Control and Hierarchical Optimization,” In: IEEE-RAS. 16th International Conference on Humanoid Robots (Humanoids). IEEE (2016) pp. 558564.Google Scholar
Xin, G., Wolfslag, W. J., Lin, H.-C., Tiseo, C. and Mistry, M. N., “An optimization-based locomotion controller for quadruped robots leveraging cartesian impedance control,” Front. Robot. AI 7, 48 (2020).10.3389/frobt.2020.00048CrossRefGoogle ScholarPubMed
Barasuol, V., Buchli, J., Semini, C., Frigerio, M., De Pieri, E. R. and Caldwell, D. G., “A reactive controller framework for quadrupedal locomotion on challenging terrain,” 5, 25542561 (2013).Google Scholar
Hoffman, E. M., Laurenzi, A., Muratore, L., Tsagarakis, N. G. and Caldwell, D. G.. Multi-Priority Cartesian Impedance Control Based on Quadratic Programming Optimization. In: 2018 IEEE International Conference on Robotics and Automation (ICRA) (2018) pp. 309315.Google Scholar
OCS2: An open source library for optimal control of switched systems. [Online]. https://github.com/leggedrobotics/ocs2.Google Scholar
Carpentier, J., Saurel, G., Buondonno, G., Mirabel, J., Lamiraux, F., Stasse, O. and Mansard, N., “The Pinocchio C++ library: A fast and flexible implementation of rigid body dynamics algorithms and their analytical derivatives,” IEEE/SICE Int. Symp. Syst. Integrat. (2019) pp. 614–619.Google Scholar
Farshidian, F., Neunert, M., Winkler, A. W., Rey, G. and Buchli, J.. “An Efficient Optimal Planning and Control Framework for Quadrupedal Locomotion,” In: 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore (2017) pp. 93100.Google Scholar
Farshidian, F., Jelavic, E., Satapathy, A., Giftthaler, M. and Buchli, J.. “Real-Time Motion Planning of Legged Robots: A Model Predictive Control Approach,” In: 17th IEEE-RAS International Conference on Humanoid Robotics, Humanoids, UK (2017) pp. 577584.Google Scholar
Todorov, E. and Li, W., “A generalized iterative LQG method for locallyoptimal feedback control of constrained nonlinear stochastic systems,” Proc. Amer. Control Conf. 1, 300306 (2005).Google Scholar
Grandia, R., Farshidian, F., Ranftl, R. and Hutter, M.. “Feedback MPC for Torque-Controlled Legged Robots,” In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2019) pp. 47304737.Google Scholar
Sleiman, J.-P., Farshidian, F. and Hutter, M., Constraint handling in continuous-time ddp-based model predictive control. In: IEEE International Conference on Robotics and Automation (ICRA) IEEE (2021) pp. 82098215.Google Scholar
Zanon, M. and Gros, S., “Safe reinforcement learning using robust MPC,” IEEE Trans. Automat. Control 66(8), 36383652 (2020).10.1109/TAC.2020.3024161CrossRefGoogle Scholar
Carpentier, J. and Wieber, P.-B., “Recent progress in legged robots locomotion control,” Curr. Robot. Rep. 2(3), 231238 (2021).10.1007/s43154-021-00059-0CrossRefGoogle Scholar
Meduri, A., Shah, P., Viereck, J., Khadiv, M., Havoutis, I. and Righetti, L., “Biconmp: A nonlinear model predictive control framework for whole body motion planning,” IEEE Trans. Robot. 39(2), 905922 (2023).10.1109/TRO.2022.3228390CrossRefGoogle Scholar