No CrossRef data available.
Published online by Cambridge University Press: 21 May 2025
This paper introduces a distributed online learning coverage control algorithm based on sparse Gaussian process regression for addressing the problem of multi-robot area coverage and source localization in unknown environments. Considering the limitations of traditional Gaussian process regression in handling large datasets, this study employs multiple robots to explore the task area to gather environmental information and approximate the posterior distribution of the model using variational free energy methods, which serves as the input for the centroid Voronoi tessellation algorithm. Additionally, taking into consideration the localization errors, and the impact of obstacles, buffer factors and centroid Voronoi tessellation algorithms with separating hyperplanes are introduced for dynamic robot task area planning, ultimately achieving autonomous online decision-making and optimal coverage. Simulation results demonstrate that the proposed algorithm ensures the safety of multi-robot formations, exhibits higher iteration speed, and improves source localization accuracy, highlighting the effectiveness of model enhancements.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.