Hostname: page-component-54dcc4c588-2ptsp Total loading time: 0 Render date: 2025-09-23T09:49:10.220Z Has data issue: false hasContentIssue false

A novel control paradigm for collision-free trajectory tracking in tractor-trailer robots

Published online by Cambridge University Press:  19 September 2025

Aliakbar Ghasemzadeh
Affiliation:
Department of Electrical and Computer Engineering, Engineering Faculty, Kharazmi University, Tehran, Iran
Alireza Azimi
Affiliation:
Department of Electrical and Computer Engineering, Engineering Faculty, Kharazmi University, Tehran, Iran
Roya Amjadifard
Affiliation:
Department of Electrical and Computer Engineering, Engineering Faculty, Kharazmi University, Tehran, Iran
Ali Keymasi-Khalaji*
Affiliation:
Department of Mechanical Engineering, Engineering Faculty, Kharazmi University, Tehran, Iran
*
Corresponding author: Ali Keymasi-Khalaji; Email: keymasi@khu.ac.ir

Abstract

This paper presents a novel control framework for achieving collision-free trajectory tracking in tractor-trailer mobile robots (TTMRs) within both static and dynamic environments. This study addresses the challenges posed by nonholonomic constraints and kinematic coupling inherent in TTMR systems. An inverse kinematic control strategy, augmented with pure integral controllers, is proposed to ensure precise trajectory tracking. The control framework is further enhanced using three obstacle avoidance approaches: two customized artificial potential field (APF) approaches and a novel path planning mode (PPM) for continuous-time trajectory adjustment. APF methods, applied for the first time to TTMR trajectory tracking, incorporate gravitational and repulsive forces to guide the robot away from obstacles, whereas PPM dynamically generates a semi-circular trajectory when the robot approaches an obstacle. Case studies validate the effectiveness of the proposed strategy in accurate trajectory tracking and safe obstacle avoidance. Comparative analyses highlight the superior performance of PPM in managing complex environments.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Lu, E., Zhao, X., Ma, Z., Xu, L. and Liu, Y., “Robust leader – follower control for cooperative harvesting operation of a tractor-trailer and a combine harvester considering confined space,” IEEE Trans. Intell. Transp. Syst. 25(11), 1768917701 (2024). doi: 10.1109/TITS.2024.3429370.CrossRefGoogle Scholar
Shojaei, K., “Intelligent coordinated control of an autonomous tractor-trailer and a combine harvester,” Eur. J. Control 59, 8298 (2021). doi: 10.1016/j.ejcon.2021.02.005.CrossRefGoogle Scholar
Zhao, H., Chen, W., Zhou, S., Zheng, F. and Liu, Y.-H., “Localization and motion planning of industrial tractor–Trailers vehicles,” IEEE Trans. Control Syst. Technol. 31(6), 29282936 (2023). doi: 10.1109/TCST.2023.3275497.Google Scholar
Wang, Z., Zhang, H. and Wang, J., “K-BMPC: Derivative-Based Koopman Bilinear Model Predictive Control for Tractor-Trailer Trajectory Tracking with Unknown Parameters,” In: 2024 IEEE Int. Conf. Robot. Autom. (ICRA) (2024) pp. 58085813. doi: 10.1109/ICRA57147.2024.10610320.CrossRefGoogle Scholar
Shojaei, K. and Abdolmaleki, M., “Output feedback control of a tractor with N-trailer with a guaranteed performance,” Mech. Syst. Signal Process. 142, 106746 (2020). doi: 10.1016/j.ymssp.2020.106746.CrossRefGoogle Scholar
Ghasemzadeh, A., Amjadifard, R. and Keymasi-Khalaji, A., “Adaptive dynamic programming for kinematic control of 3 Interconnected wheeled mobile robots,” Iran. Conf. Electr. Eng. ICEE (2024). doi: 10.1109/ICEE63041.2024.10668025.CrossRefGoogle Scholar
Kassaeiyan, P., Alipour, K. and Tarvirdizadeh, B., “A full-state trajectory tracking controller for tractor-trailer wheeled mobile robots,” Mech. Mach. Theory 150, 103872 (2020). doi: 10.1016/j.mechmachtheory.2020.103872.CrossRefGoogle Scholar
Robat, A. B., Arezoo, K., Alipour, K. and Tarvirdizadeh, B., “Dynamics modeling and path following controller of tractor-trailer-wheeled robots considering wheels slip,” ISA Trans. 148, 4563 (2024). doi: 10.1016/j.isatra.2024.03.004.CrossRefGoogle Scholar
Zhao, H., Zhou, S., Chen, W., Miao, Z. and Liu, Y.-H., “Modeling and motion control of industrial tractor–Trailers vehicles using force compensation,” IEEE/ASME Trans. Mechatron. 26(2), 645656 (2021). doi: 10.1109/TMECH.2021.3057898.CrossRefGoogle Scholar
Lukassek, M., Volz, A., Szabo, T. and Graichen, K., “Model Predictive Path-Following Control for General n-Trailer Systems with an Arbitrary Guidance Point,” In: 2021 Eur. Control Conf. (ECC) (2021) pp. 13351340. doi: 10.23919/ECC54610.2021.9654870.CrossRefGoogle Scholar
Lukassek, M., Dahlmann, J., Völz, A. and Graichen, K., “Model predictive path-following control for truck–trailer systems with specific guidance points – design and experimental validation,” Mechatronics 100, 103190 (2024). doi: 10.1016/j.mechatronics.2024.103190.CrossRefGoogle Scholar
Lu, E., Xue, J., Chen, T. and Jiang, S., “Robust trajectory tracking control of an autonomous tractor-trailer considering model parameter uncertainties and disturbances,” Agriculture-LONDON 13(4), 869 (2023). doi: 10.3390/agriculture13040869.Google Scholar
Guevara, L., Jorquera, F., Walas, K. and Auat-Cheein, F., “Robust control strategy for generalized N-trailer vehicles based on a dual-stage disturbance observer,” Control Eng. Pract. 131, 105382 (2023). doi: 10.1016/j.conengprac.2022.105382.CrossRefGoogle Scholar
Zhou, Y., Wen, X. and Xu, Q., “Precise motion control of tractor-trailer wheeled mobile structures via a newly observed key motion law,” Nonlinear Dyn. 103(1), 833848 (2021). doi: 10.1007/s11071-020-06162-9.CrossRefGoogle Scholar
Soni and Kumar, N., “Backstepping based intelligent control of tractor-trailer mobile manipulators with wheel slip consideration,” ISA Trans. 153, 7895 (2024). doi: 10.1016/j.isatra.2024.07.020.Google Scholar
Chen, Y., Liu, Y. J. and Liu, L. Adaptive event-triggered optimal $H_\infty$ tracking control for uncertain nonlinear systems: Comparative analysis applied to autonomic tractor-trailer system,” Neurocomputing 595, 127898 (2024). doi: 10.1016/J.NEUCOM.2024.127898.CrossRefGoogle Scholar
Ghasemzadeh, A., Amjadifard, R. and Keymasi-Khalaji, A., “Adaptive dynamic programming for trajectory tracking control of a tractor-trailer wheeled mobile robot,” IET Control Theory Appl. 19(1), e12784 (2025). doi: 10.1049/cth2.12784.Google Scholar
Khanpoor, A., Khalaji, A. K. and Moosavian, A. A. S., “Modeling and control of an underactuated tractor–trailer wheeled mobile robot,” Robotica 35(12), 22972318 (2017). doi: 10.1017/S0263574716000886.CrossRefGoogle Scholar
Elhaki, O. and Shojaei, K., “A novel adaptive fuzzy reinforcement learning controller for a platoon of off-axle hitching tractor-trailers with a prescribed performance and path curvature compensation,” Eur. J. Control 69, 100735 (2023). doi: 10.1016/j.ejcon.2022.100735.CrossRefGoogle Scholar
Yin, C., Wang, S., Gao, J. and Li, X., “Trajectory tracking for agricultural tractor based on improved fuzzy sliding mode control,” PLoS One 18(4), e0283961 (2023). doi: 10.1371/journal.pone.0283961.CrossRefGoogle ScholarPubMed
Nazemizadeh, M., Kolahi, P. M. and Gandomkar, M., “Optimal trajectory tracking of tractor-trailer wheeled platforms taken into account wheel dynamics,” Eng. Res. Express 6(2), 025504 (2024). doi: 10.1088/2631-8695/ad3712.Google Scholar
Rigatos, G., Busawon, K. and Abbaszadeh, M., “A nonlinear optimal control approach for the truck and N-trailer robotic system,” IFAC J. Syst. Control 20, 100191 (2022). doi: 10.1016/j.ifacsc.2022.100191.Google Scholar
Jin, X., Dai, S.-L. and Liang, J., “Adaptive constrained formation-tracking control for a tractor-trailer mobile robot team with multiple constraints,” IEEE Trans. Automat. Control 68(3), 17001707 (2023). doi: 10.1109/TAC.2022.3151846.CrossRefGoogle Scholar
Jin, X., Liang, J., Dai, S.-L. and Guo, D., “Adaptive line-of-sight tracking control for a tractor-trailer vehicle system with multiple constraints,” IEEE Trans. Intell. Transp. Syst. 23(8), 1134911360 (2022). doi: 10.1109/TITS.2021.3103102.Google Scholar
Khalaji, A. K. and Jalalnezhad, M., “Robust forward∖backward control of wheeled mobile robots,” ISA Trans. 115, 3245 (2021). doi: 10.1016/j.isatra.2021.01.016.CrossRefGoogle Scholar
Zhao, T., Huang, W., Xu, P., Zhang, W., Li, P. and Zhao, Y., “A simple curvature-based backward path-tracking control for a mobile robot with N trailers,” Actuators 13(7), 237 (2024). doi: 10.3390/act13070237.CrossRefGoogle Scholar
Salamah, Y. B., “Sliding mode controller for autonomous tractor-trailer vehicle reverse path tracking,” Appl. Sci. 13(21), 11998 (2023). doi: 10.3390/app132111998.CrossRefGoogle Scholar
Bertolani, D. N., Bacheti, V. P., Brandão, A. S., Carelli, R. and Sarcinelli-Filho, M., “Controlling a multi-articulated robot in backward movement using an adaptive controller,” Mechatronics 92, 102967 (2023). doi: 10.1016/j.mechatronics.2023.102967.CrossRefGoogle Scholar
Alipour, K., Robat, A. B. and Tarvirdizadeh, B., “Dynamics modeling and sliding mode control of tractor-trailer wheeled mobile robots subject to wheels slip,” Mech. Mach. Theory 138, 1637 (2019). doi: 10.1016/j.mechmachtheory.2019.03.038.CrossRefGoogle Scholar
Khalaji, A. K. and Jalalnezhad, M., “Control of a tractor-trailer robot subjected to wheel slip,” Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. 233(4), 956967 (2019). doi: 10.1177/1464419319839848.Google Scholar
Khalaji, A. K. and Jalalnezhad, M., “Stabilization of a tractor with n trailers in the presence of wheel slip effects,” Robotica 39(5), 787797 (2021). doi: 10.1017/S0263574720000727.CrossRefGoogle Scholar
Deniz, N., Jorquera, F., Torres-Torriti, M. and Cheein, F. A., “Model predictive path-following controller for generalised N-trailer vehicles with noisy sensors and disturbances,” Control Eng. Pract. 142, 105747 (2024). doi: 10.1016/j.conengprac.2023.105747.CrossRefGoogle Scholar
Naderolasli, A., Shojaei, K. and Chatraei, A., “Leader–follower formation control of Euler–Lagrange systems with limited field-of-view and saturating actuators: A case study for tractor-trailer wheeled mobile robots,” Eur. J. Control 75, 100903 (2024). doi: 10.1016/j.ejcon.2023.100903.CrossRefGoogle Scholar
Wang, X., Deng, Z., Li, H., Wang, L., Jin, J. and Su, X., “Safe dispatch corridor: Towards efficient trajectory planning for carrier aircraft traction system on flight deck,” IEEE Trans. Aerosp. Electron. Syst 1-14 (2024). doi: 10.1109/TAES.2024.3441250.CrossRefGoogle Scholar
Bitar, G., Martinsen, A. B., Lekkas, A. M. and Breivik, M., “Two-stage optimized trajectory planning for ASVs under polygonal obstacle constraints: Theory and experiments,” IEEE Access 8, 199953199969 (2020). doi: 10.1109/ACCESS.2020.3035488.Google Scholar
Bushnell, L. G., “An Obstacle Avoidance Algorithm for a Car Pulling Trailers with Off-Axle Hitching,” In: Proc. 34th IEEE Conf. Decis. Control (1995) pp. 38373842. doi: 10.1109/CDC.1995.479196.CrossRefGoogle Scholar
Yue, M., Wu, X., Guo, L. and Gao, J., “Quintic polynomial-based obstacle avoidance trajectory planning and tracking control framework for tractor-trailer system,” Int. J. Control. Autom. Syst. 17(10), 26342646 (2019). doi: 10.1007/s12555-018-0889-9.CrossRefGoogle Scholar
Murillo, M., Sánchez, G., Deniz, N., Genzelis, L. and Giovanini, L., “Improving path-tracking performance of an articulated tractor-trailer system using a non-linear kinematic model,” Comput. Electron. Agric. 196, 106826 (2022). doi: 10.1016/j.compag.2022.106826.CrossRefGoogle Scholar
Deniz, N. N. and Cheein, F. A., “Model predictive path-following framework for generalized N-trailer vehicles in the presence of dynamic obstacles modeled as soft constraints,” IEEE Trans. Autom. Sci. Eng. 1-15 (2024). doi: 10.1109/TASE.2024.3458809.CrossRefGoogle Scholar
Wang, X., Liu, J., Peng, H., Qie, X., Zhao, X. and Lu, C., “A simultaneous planning and control method integrating APF and MPC to solve autonomous navigation for USVs in unknown environments,” J. Intell. Robot. Syst. 105(2), 36 (2022). doi: 10.1007/s10846-022-01663-8.CrossRefGoogle Scholar
Tang, Y., Mamaev, I., Qin, J., Wurll, C. and Hein, B., “Reachability-Aware Collision Avoidance for Tractor-Trailer System with Non-Linear MPC and Control Barrier Function,” In: 2023 IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2023) pp. 274281. doi: 10.1109/IROS55552.2023.10341919.CrossRefGoogle Scholar
Aali, M. and Liu, J., “Multiple Control Barrier Functions: An Application to Reactive Obstacle Avoidance for a Multi-Steering Tractor-Trailer System," In: 2022 IEEE 61st Conf. Decis. Control (CDC) (2022) pp. 69936998. doi: 10.1109/CDC51059.2022.9992820.CrossRefGoogle Scholar
Cai, Y., Wang, G., Zuo, Z., Ji, Y. and Li, P., “Safety-Critical Control for Nonholonomic Tractor-Trailer Systems Using Control Barrier Functions and Differential Flatness,” In: 2024 IEEE Int. Conf. Mechatron. Autom. (ICMA) (2024) pp. 864869. doi: 10.1109/ICMA61710.2024.10633135.CrossRefGoogle Scholar
Khalaji, A. K. and Moosavian, S. A. A., “Robust adaptive controller for a tractor-trailer mobile robot,” IEEE/ASME Trans. Mechatron. 19(3), 943953 (2014). doi: 10.1109/TMECH.2013.2261534.CrossRefGoogle Scholar
Liu, W., Chen, Y., Liu, Y., Zhang, J., Wu, J. and Liu, Z., “COLREGS-based collision avoidance algorithm for unmanned surface vehicles using modified artificial potential fields,” Phys. Commun. 57, 101980 (2023). doi: 10.1016/J.PHYCOM.2022.101980.Google Scholar
Mao, M., Wu, D. and You, Z., “Dynamic event-triggered path-following control for underactuated unmanned surface vehicle with obstacle avoidance,” Ocean Eng. 312, 119161 (2024). doi: 10.1016/j.oceaneng.2024.119161.Google Scholar
Shi, P. and Zhao, Y., “Global path planning for mobile robot based on improved artificial potential function,” IEEE Int. Conf. Autom. Logist. 1900 (2009). doi: 10.1109/ICAL.2009.5262656.Google Scholar