Skip to main content Accessibility help

Parental scaffolding as a bootstrapping mechanism for learning grasp affordances and imitation skills

  • Emre Ugur (a1) (a2), Yukie Nagai (a3), Hande Celikkanat (a4) and Erhan Oztop (a2) (a5)


Parental scaffolding is an important mechanism that speeds up infant sensorimotor development. Infants pay stronger attention to the features of the objects highlighted by parents, and their manipulation skills develop earlier than they would in isolation due to caregivers' support. Parents are known to make modifications in infant-directed actions, which are often called “motionese”7. The features that might be associated with motionese are amplification, repetition and simplification in caregivers' movements, which are often accompanied by increased social signalling. In this paper, we extend our previously developed affordances learning framework to enable our hand-arm robot equipped with a range camera to benefit from parental scaffolding and motionese. We first present our results on how parental scaffolding can be used to guide the robot learning and to modify its crude action execution to speed up the learning of complex skills. For this purpose, an interactive human caregiver-infant scenario was realized with our robotic setup. This setup allowed the caregiver's modification of the ongoing reach and grasp movement of the robot via physical interaction. This enabled the caregiver to make the robot grasp the target object, which in turn could be used by the robot to learn the grasping skill. In addition to this, we also show how parental scaffolding can be used in speeding up imitation learning. We present the details of our work that takes the robot beyond simple goal-level imitation, making it a better imitator with the help of motionese.


Corresponding author

*Corresponding author. E-mail:


Hide All
1. Argall, B. D., Sauser, E. L. and Billard, A. G., “Tactile Guidance for Policy Refinement and Reuse,” Proceedings of the 9th IEEE International Conference on Development and Learning (2010) pp. 7–12.
2. Babic, J., Hale, J. and Oztop, E., “Human sensorimotor learning for humanoid robot skill synthesis,” Adapt. Behav. 19, 250263 (2011).
3. Barrett, T. M. and Needham, A., “Developmental differences in infants' use of an object's shape to grasp it securely,” Developmental Psychobiology 50 (1), 97106 (2008).
4. Berk, L. E. and Winsler, A., “Scaffolding Children's Learning: Vygotsky and Early Childhood Education,” National Assoc. for Education (1995).
5. Bicchi, A. and Kumar, V., “Robotic Grasping and Contact: A Review,” Proceedings of the IEEE International Conference on Robotics and Automation (2000) pp. 348–353.
6. Billard, A., “Learning motor skills by imitation: A biologically inspired robotic model,” Cybern. Syst. 32, 155193 (2000).
7. Brand, R. J., Baldwin, D. A. and Ashburn, L. A., “Evidence for ‘motionese’: Modifications in mothers' infant-directed action,” Developmental Sci. 5 (1), 7283 (2002).
8. Breazeal, C., Learning by Scaffolding PhD Thesis, Elec. Eng. Comp. Sci. (MIT, Cambridge, MA, 1999).
9. Calinon, S., Guenter, F. and Billard, A., “On learning, representing, and generalizing a task in a humanoid robot,” IEEE Trans. Syst. Man Cybern. 37 (2), 286298 (2007).
10. Carpenter, M., Call, J. and Tomasello, M., “Understanding ‘prior intentions’ enables two-year-olds to imitatively learn a complex task,” Child Dev. 73 (5), 14311441 (2002).
Şahin, E., Çakmak, M., Doğar, M. R., Ugur, E. and Üçoluk, G., “To afford or not to afford: A new formalization of affordances toward affordance-based robot control,” Adapt. Behav. 15 (4), 447472 (2007).
12. Detry, R., Baçeski, E., Popović, M., Touati, Y., Krüger, N., Kroemer, O., Peters, J. and Piater, J., “Learning Continuous Grasp Affordances by Sensorimotor Exploration,” In: From Motor Learning to Interaction Learning in Robots (Springer, Berlin, 2010) pp. 451465.
13. Detry, R., Kraft, D., Kroemer, O., Bodenhagen, L., Peters, J., Krüger, N. and Piater, J., “Learning grasp affordance densities,” Paladyn, 2 (1), 117 (2011).
14. Fernald, A., “Four-month-old infants prefer to listen to motherese,” Infant Behav. Dev. 8, 181195 (1985).
15. Fischer, K., Foth, K., Rohlfing, K. J. and Wrede, B., “Mindful tutors: Linguistic choice and action demonstration in speech to infants and a simulated robot,” Interact. Stud. 12 (1), 134161 (2011).
16. Gams, A., Ijspeert, A. J., Schaal, S. and Lenarcic, J., “On-line learning and modulation of periodic movements with nonlinear dynamical systems,” Auton. Robots 27 (1), 323 (2009).
17. Gergely, G., Bekkering, H. and Kiraly, I., “Rational imitation in preverbal infants,” Nature 415, 755 (2002).
18. Goubeta, N., Rochat, P., Maire-Leblond, C. and Poss, S., “Learning from others in 9–18-month-old infants,” Infant Child Dev. 15, 161177 (2006).
19. Haralick, R. M. and Shapiro, L. G., Computer and Robot Vision, Volume I (Addison-Wesley, New York, 1992).
20. Herzog, A., Pastor, P., Kalakrishnan, M., Righetti, L., Bohg, J., Asfour, T. and Schaal, S., “Learning of grasp selection based on shape-templates,” Auton. Robots 36 (1-2), 5165 (2014).
21. Hodapp, R. M., Goldfield, E. C. and Boyatzis, C. J., “The use and effectiveness of maternal scaffolding in mother-infant games,” Child Dev. 55 (3), 772781 (1984).
22. Kawato, M. and Samejima, K., “Efficient reinforcement learning: Computational theories, neuroscience and robotics,” Curr. Opin. Neurobiology 17, 205212 (2007).
23. Koterba, E. A. and Iverson, J. M., “Investigating motionese: The effect of infant-directed action on infants' attention and object exploration,” Infant Behav. Dev. 32 (4), 437444 (2009).
24. Kushida, D., Nakamura, M., Goto, S. and Kyura, N., “Human direct teaching of industrial articulated robot arms based on force-free control,” Artif. Life Robot. 5 (1), 2632 (2001).
25. Masakata, N., “Motherese in a signed language,” Infant Behav. Dev. 15, 453460 (1992).
26. Moore, B. and Oztop, E., “Robotic grasping and manipulation through human visuomotor learning,” Robot. Auton. Syst. 60, 441451 (2012).
27. Murata, A., Gallese, V., Luppino, G., Kaseda, M. and Sakata, H.. “Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal are AIP,” J. Neuropyhsiology 83 (5), 25802601, (2000).
28. Nagai, Y. and Rohlfing, K. J.Computational analysis of motionese toward scaffolding robot action learning,” IEEE Trans. Auton. Mental Dev. 1 (1), 4454 (2009).
29. Nagai, Y., Nakatani, A. and Asada, M., “How a RobotS Attention Shapes the Way People Teach,” Proceedings of the 10th International Conference on Epigenetic Robotics (2010), pp. 81–88.
30. Nagai, Y. and Rohlfing, K. J., “Can Motionese Tell Infants and Robots: What to Imitate?,” Proceedings of the 4th International Symposium on Imitation in Animals and Artifacts, AISB (2007) pp. 299–306.
31. Nagai, Y. and Rohlfing, K. J., “Parental Action Modification Highlighting the Goal versus the Means,” Proceedings of the IEEE 7th International Conference on Development and Learning (2008).
32. Nakanishi, J., Morimoto, J., Endo, G., Cheng, G., Schaal, S. and Kawato, M., “Learning from demonstration and adaptation of biped locomotion,” Robot. Auton. Syst. 47 (2), 7991 (2004).
33. Nehaniv, C. L. and Dautenhah, D., “Like me? Measures of correspondence and imitation,” Cybern. Syst. 32, 1151 (2011).
34. Pastor, P., Righetti, L., Kalakrishnan, M. and Schaal, S., “Online Movement Adaptation Based on Previous Sensor Experiences,” Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE (2011) pp. 365–371.
35. Paulus, M., Hunnius, S., Vissers, M. and Bekkering, H., “Imitation in infancy: Rational or motor resonance?,” Child Dev. 82 (4), 10471057 (2011).
36. Peters, J., Vijayakumar, S. and Schaal, S., “Reinforcement Learning for Humanoid Robotics,” Proceedings of the Third IEEE-RAS International Conference on Humanoid Robots (2003) pp. 1–20.
37. Rohlfing, K. J., Fritsch, J., Wrede, B. and Jungmann, T., “How Can Multimodal Cues from Child-Directed Interaction Reduce Learning Complexity in Robots?,” Adv. Robot. 20 (10), 11831199 (2006).
38. Saunders, J., Nehaniv, C., Dautenhahn, K. and Alissandrakis, A., “Self-imitation and environmental scaffolding for robot teaching,” Int. J. Adv. Robot. Syst. 4 (1), 109124 (2007).
39. Saunders, J., Nehaniv, C. L. and Dautenhahn, K., “Teaching Robots by Moulding Behavior and Scaffolding the Environment,” Proceedings of the ACM SIGCHI/SIGART Conference on Human-robot Interaction (2006) pp. 118–125.
40. Saxena, A., Driemeyer, J. and Ng, A. Y., “Robotic grasping of novel objects using vision,” Int. J. Robot. Res. 27 (2), 157173 (2008).
41. Schaal, S., “Is imitation learning the route to humanoid robots?,” Trends Cogn. Sci. 3 (6), 233242 (1999).
42. Schaal, S., “Dynamic Movement Primitives-a Framework for Motor Control in Humans and Humanoid Robotics,” In: Adaptive Motion of Animals and Machines. (Springer, 2006) pp. 261280.
43. Tamis-LeMonda, C. S., Kuchirko, Y. and Tafuro, L., “From action to interaction: Infant object exploration and mothers' contingent responsiveness (june 2013),” IEEE Trans. Auton. Mental Dev. 5 (3) (2013).
44. Tomasello, M., “Do Apes Ape?,” In: Social Learning in Animals: The Roots of Culture(Heyes, C. M. and Galef, B. G., eds.) (Academic Press, Inc., San Diego, CA, 1996) pp. 319346.
45. Ude, A., Gams, A., Asfour, T. and Morimoto, J., “Task-specific generalization of discrete and periodic dynamic movement primitives,” IEEE Trans. Robot. 26 (5), 800815 (2010).
46. Ugur, E., Celikkanat, H., Nagai, Y. and Oztop, E., “Learning to Grasp with Parental Scaffolding,” Proceedings of the IEEE International Conference on Humanoid Robotics (2011a) pp. 480–486.
47. Ugur, E., Oztop, E. and Sahin, E., “Goal emulation and planning in perceptual space using learned affordances,” Robot. Auton. Syst. 59 (7–8), 580595 (2011b).
48. Ugur, E., Sahin, E. and Oztop, E., “Affordance Learning from Range Data for Multi-Step Planning,” Proceedings of the 9th International Conference on Epigenetic Robotics (2009) pp. 177–184.
49. Ugur, E., Sahin, E. and Oztop, E., “Self-discovery of Motor Primitives and Learning Grasp Affordances,” IEEE/RSJ International Conference on Intelligent Robots and Systems (2012) pp. 3260–3267.
van Elk, M., van Schie, H. T., Hunnius, S., Vesper, C. and Bekkering, H., “You'll never crawl alone: Neurophysiological evidence for experience-dependent motor resonance in infancy,” Neuroimage, 43 (4), 808814 (2008).
51. Vandermeer, A., Vanderweel, F. and Lee, D., “The functional-significance of arm movements in neonates,” Science 267, 693695 (1995).
52. Wood, D., Bruner, J. S. and Ross, G., “The role of tutoring in problem-solving,” J. Child Psychol. Psychiatry 17, 89100 (1976).
53. Zukow-Goldring, P. and Arbib, M. A., “Affordances, effectivities, and assisted imitation: Caregivers and the directing of attention,” Neurocomputing 70, 21812193 (2007).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed