Skip to main content Accessibility help
×
Home

Real-time full body motion imitation on the COMAN humanoid robot

  • Andrej Gams (a1) (a2), Jesse van den Kieboom (a2), Florin Dzeladini (a2), Aleš Ude (a1) and Auke Jan Ijspeert (a2)...

Summary

On-line full body imitation with a humanoid robot standing on its own two feet requires simultaneously maintaining the balance and imitating the motion of the demonstrator. In this paper we present a method that allows real-time motion imitation while maintaining stability, based on prioritized task control. We also describe a method of modified prioritized kinematic control that constrains the imitated motion to preserve stability only when the robot would tip over, but does not alter the motions otherwise. To cope with the passive compliance of the robot, we show how to model the estimation of the center of mass of the robot using support vector machines. In the paper we give detailed description of all steps of the algorithm, essentially providing a tutorial on the implementation of kinematic stability control. We present the results on a child-sized humanoid robot called Compliant Humanoid Platform or COMAN. Our implementation shows reactive and stable on-line motion imitation of the humanoid robot.

Copyright

Corresponding author

*Corresponding author. E-mail: andrej.gams@ijs.si

References

Hide All
1. Ude, A., Atkeson, C. G. and Riley, M., “Planning of Joint Trajectories for Humanoid Robots Using B-Spline Wavelets,” Proceedings of the IEEE International Conference on Robotics and Automation (2000) pp. 22232228. doi:10.1109/ROBOT.2000.846358.
2. Gams, A., Ijspeert, A. J., Schaal, S. and Lenarčič, J., “On-line learning and modulation of periodic movements with nonlinear dynamical systems,” Auton. Robots 27 (1), 323 (2009).
3. Petrič, T., Gams, A., Babič, J. and Žlajpah, L., “Reflexive stability control framework for humanoid robots,” Auton. Robots 34 (4), 347361 (2013).
4. Vukobratovic, M. and Juricic, D., “Contribution to the synthesis of biped gait,” IEEE Trans. Biomed. Eng. BME–16 (1), 16 (Jan. 1969).
5. Vukobratovic, M. and Borovac, B., “Zero-moment point—thirty five years of its life,” Int. J. Humanoid Robot. 1 (1), 157173 (2004).
6. Sardain, P. and Bessonnet, G., “Forces acting on a biped robot. center of pressure-zero moment point,” IEEE Trans. Syst. Man Cybern. 34 (5), 630637 (2004).
7. Harada, K., Kajita, S., Kaneko, K. and Hirukawa, H., “ZMP Analysis for Arm/Leg Coordination,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1 (Oct. 2003) pp. 7581.
8. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K. and Hirukawa, H., “Biped Walking Pattern Generation by Using Preview Control of Zero-Moment Point,” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), vol. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (Sep. 2003) pp. 16201626.
9. Hyon, S.-H., Hale, J. G. and Cheng, G., “Full-body compliant human–humanoid interaction: Balancing in the presence of unknown external forces,” Full-body compliant human–humanoid interaction: Balancing in the presence of unknown external forces 23 (5), 884898 (Oct. 2007).
10. Sugihara, T., Nakamura, Y. and Inoue, H., “Real-Time Humanoid Motion Generation through ZMP Manipulation Based on Inverted Pendulum Control,” Proceedings of the IEEE International Conference on Robotics and Automation, vol. Proceedings of the IEEE International Conference on Robotics and Automation (2002) pp. 14041409. doi:10.1109/ROBOT.2002.1014740.
11. Suleiman, W., Kanehiro, F., Miura, K. and Yoshida, E., “Improving ZMP-Based Control Model Using System Identification Techniques,” Proceedings of the 9th IEEE-RAS International Conference on Humanoid Robots (Humanoids) (Dec. 2009) pp. 74 –80.
12. Mansard, N. and Chaumette, F., “Task sequencing for high-level sensor-based control,” IEEE Tran. Robot. 23 (1), 6072 (Feb. 2007).
13. Sentis, L., Park, J. and Khatib, O., “Compliant control of multicontact and center-of-mass behaviors in humanoid robots,” IEEE Trans. Robot. 26 (3), 483501 (2010).
14. Mistry, M., Nakanishi, J. and Schaal, S., “Task Space Control with Prioritization for Balance and Locomotion,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (Oct. 2007) pp. 331–338.
15. Chang, C.-C. and Lin, C.-J., “LIBSVM: A library for support vector machines,” LIBSVM: A library for support vector machines 2, 27:127 (2011).
16. Cortes, C. and Vapnik, V., “Support-vector networks,” Mach. Learn. 20 (3), 273297 (1995).
17. Lee, J., Dallali, H., Tsagarakis, N. and Caldwell, D., “Robust and Model-Free Link Position Tracking Control for Humanoid COMAN with Multiple Compliant Joints,” Proceedings of the 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids) (Oct. 2013) pp. 56–61.
18. Mosadeghzad, M., Li, Z., Tsagarakis, N., Medrano-Cerda, G. A., Dallali, H. and Caldwell, D. G., “Optimal Ankle Compliance Regulation for Humanoid Balancing Control,” Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (Nov. 2013) pp. 4118–4123.
19. Gay, S., van den Kieboom, J., Santor-Victor, J. and Ijspeert, A. J., “Model-Based and Model-Free Approaches for Postural Control of a Compliant Humanoid Robot using Optical Flow,” Proceedings of the 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids) (Oct. 2013) pp. 1–7.
20. Nguyen, V. V. and Lee, J.-H., “Full-body Imitation of Human Motions with Kinect and Heterogeneous Kinematic Structure of Humanoid Robot,” Proceedings of the 2012 IEEE/SICE International Symposium on System Integration (Dec. 2012) pp. 93–98.
21. Koenemann, J. and Bennewitz, M., “Whole-Body Imitation of Human Motions with a Nao Humanoid,” Proceedings of the 7th ACM/IEEE International Conference on Human-Robot Interaction (HRI) (Mar. 2012) pp. 425–425.
22. Ramos, O. E., Saab, L., Hak, S. and Mansard, N., “Dynamic Motion Capture and Edition Using a Stack of Tasks,” Proceedings of the 11th IEEE-RAS International Conference on Humanoid Robots (Humanoids) (Oct. 2011) pp. 224–230.
23. Zheng, Y. and Yamane, K., “Human Motion Tracking Control with Strict Contact Force Constraints for Floating-Base Humanoid Robots,” Proceedings of the 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids) (Oct. 2013) pp. 1–7.
24. Santis, A., Gironimo, G., Pelliccia, L., Siciliano, B. and Tarallo, A., “Multiple-point Kinematic Control of a Humanoid Robot,” In: Advances in Robot Kinematics: Motion in Man and Machine (Lenarcic, J. and Stanisic, M. M., eds.) (Springer, Netherlands, 2010) pp. 157168.
25. Bajd, T., Mihelj, M., Lenarčič, J., Stanovnik, A. and Munih, M., “Robotics,” In: Intelligent Systems, Control and Automation: Science and Engineering, vol. 43 (Springer Science+Business Media B.V., 2010) pp. 2332.
26. Kajita, S., Kanehiro, F., Kaneko, K., Yokoi, K. and Hirukawa, H., “The 3D Linear Inverted Pendulum Mode: A Simple Modeling for a Biped Walking Pattern Generation,” Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems (2001) pp. 239246. doi:10.1109/IROS.2001.973365.
27. Goswami, A., “Postural stability of biped robots and the foot-rotation indicator (FRI) point,” Int. J. Robot. Res. 18 (6), 523533 (1999).
28. Moro, F. L., Tsagarakis, N. G. and Caldwell, D. G., “A Human-Like Walking for the Compliant Humanoid Coman Based on Com Trajectory Reconstruction from Kinematic Motion Primitives,” Proceedings of the 11th IEEE-RAS International Conference on Humanoid Robots (Humanoids) (Oct. 2011) pp. 364–370.
29. Colasanto, L., Tsagarakis, N. G. and Caldwell, D. G., “A Compact Model for the Compliant Humanoid Robot COMAN,” Proceedings of the 4th IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) (Jun. 2012) pp. 688–694.
30. Michel, O., “Webots: Professional mobile robot simulation,” J. Adv. Robot. Syst. 1 (1), 3942 (2004).
31. Pastor, P., Kalakrishnan, M., Binney, J., Kelly, J., Righetti, L., Sukhatme, G. and Schaal, S., “Learning Task Error Models for Manipulation,” Proceedings of the 2013 IEEE International Conference on Robotics and Automation (May 2013) pp. 2612–2618.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed