Hostname: page-component-5b777bbd6c-w9n4q Total loading time: 0 Render date: 2025-06-18T11:13:34.630Z Has data issue: false hasContentIssue false

Research on motion control of spherical robot in slope environment

Published online by Cambridge University Press:  16 May 2025

Rui Lin
Affiliation:
School of Information Engineering, Southwest University of Science and Technology, Mianyang, China
Tujiu Li
Affiliation:
Sichuan Yaolei Science and Technology Co., Ltd., Mianyang, China
Jianwen Huo*
Affiliation:
School of Information Engineering, Southwest University of Science and Technology, Mianyang, China
Qiguan Wang
Affiliation:
School of Information Engineering, Southwest University of Science and Technology, Mianyang, China
*
Corresponding author: Jianwen Huo; Email: huojianwen2008@hotmail.com

Abstract

Spherical robots face significant challenges in motion control on non-horizontal terrains, such as slopes, due to their unique spherical structure. This paper systematically investigates the motion stability of spherical robots on inclined surfaces through modeling, control algorithm design, and experimental validation. Precise Equilibrium Modeling: Using the virtual displacement method, the precise equilibrium equation for spherical robots on slopes is derived, addressing the issue of insufficient accuracy in describing the actual center of gravity in existing studies. Control Algorithm Design: For known slope conditions, a Backstepping Control (BSC) algorithm is designed, demonstrating excellent tracking performance. For unknown slope conditions, an Adaptive Backstepping Control (ABSC) algorithm is proposed, which significantly reduces tracking errors and enhances system robustness through parameter adaptation. Simulation and Physical Validation: Simulations confirm the effectiveness of the algorithms: BSC achieves high-precision control under known slopes, while ABSC exhibits strong adaptability under unknown slopes. Physical experiments validate the stability of the algorithms in a $5^\circ$ slope environment, demonstrating reliable performance across different control angles.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bujňák, M., Pirník, R., Rástočny`, K., Janota, A., Nemec, D., Kuchár, P., Tichy`, T. and Łukasik, Z., “Spherical robots for special purposes: A review on current possibilities,” Sensors 22(4), 1413 (2022).CrossRefGoogle ScholarPubMed
Li, M., Sun, H., Ma, L., Gao, P., Huo, D., Wang, Z. and Sun, P., “Special spherical mobile robot for planetary surface exploration: A review,” Int. J. Adv. Robot. Syst. 20(2), 17298806231162207 (2023).CrossRefGoogle Scholar
Bahar, M. B., Abdullah, S. S., Aras, M. S. M., Harun, M. H., Zohedi, F. N., et al., “A comprehensive review of driving mechanisms in amphibian spherical robots,” Indian Journal of Geo-Marine Sciences (IJMS) 50(11), 864872 (2022).Google Scholar
Chase, R. and Pandya, A., “A review of active mechanical driving principles of spherical robots,” Robotics 1(1), 323 (2012).CrossRefGoogle Scholar
Zhan, Q. and Li, W., “Research progress and development trend of spherical mobile robots,” J. Mech. Eng. 55(9), 117 (2019).CrossRefGoogle Scholar
Diouf, A., Belzile, B., Saad, M. and St-Onge, D., “Spherical rolling robots—Design, modeling, and control: A systematic literature review,” Robot. Auton. Syst. 175, 104657 (2024).CrossRefGoogle Scholar
Ahn, S.-S. and Lee, Y.-J., “Novel spherical robot with hybrid pendulum driving mechanism,” Adv. Mech. Eng. 6, 456727 (2014).CrossRefGoogle Scholar
Zhao, B., Li, M., Yu, H., Hu, H. and Sun, L.. Dynamics and motion control of a two pendulums driven spherical robot. 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE (2010) pp. 147153.CrossRefGoogle Scholar
DeJong, B. P., Karadogan, E., Yelamarthi, K. and Hasbany, J., “Design and analysis of a four-pendulum omnidirectional spherical robot,” J. Intell. Robot. Syst. 86(1), 315 (2017).CrossRefGoogle Scholar
Asiri, S., Khademianzadeh, F., Monadjemi, A. and Moallem, P., “The design and development of a dynamic model of a low-power consumption, two-pendulum spherical robot,” IEEE/ASME Transactions on Mechatronics 24(5), 24062415 (2019).CrossRefGoogle Scholar
Sun, H., Wang, L., Jia, Q. and Liu, D., “Dynamic model of the BYQ-3 spherical robot,” J. Mech. Eng. 45(10), 814 (2009).CrossRefGoogle Scholar
ZHENG, M., ZHAN, Q., LIU, J. and CAI, Y., “Control of a spherical robot: Path following based on nonholonomic kinematics and dynamics,” Chinese J. Aeronaut. 24(3), 337345 (2011).CrossRefGoogle Scholar
Kayacan, E., Bayraktaroglu, Z. Y. and Saeys, W., “Modeling and control of a spherical rolling robot: A decoupled dynamics approach,” Robotica 30(4), 671680 (2012).CrossRefGoogle Scholar
Li, T., Wang, Z. and Ji, Z., “Dynamic modeling and simulation of the internal-and external-driven spherical robot,” J. Aerospace Eng. 25(4), 636640 (2012).CrossRefGoogle Scholar
Azizi, M. R. and Naderi, D., “Dynamic modeling and trajectory planning for a mobile spherical robot with a 3Dof inner mechanism,” Mech. Mach. Theory 64, 251261 (2013).CrossRefGoogle Scholar
Ghariblu, H., “A new mobile ball robot-dynamic modeling and simulation,” Appl. Math. Model. 39(10-11), 31033115 (2015).CrossRefGoogle Scholar
Kilin, A. A., Pivovarova, E. N. and Ivanova, T. B., “Spherical robot of combined type: Dynamics and control,” Regul. Chaotic Dyn. 20(6), 716728 (2015).CrossRefGoogle Scholar
Zhang, Q., Jia, Q., Sun, H. and Gong, Z.. Application of a genetic algorithm-based pi controller in a spherical robot. 2009 IEEE International Conference on Control and Automation, IEEE (2009) pp. 180184.CrossRefGoogle Scholar
Zhao, B., Wang, P., Sun, L. and Li, M., “Linear motion control of two-pendulums-driven spherical robot,” J. Mech. Eng. 47(11), 16 (2011).CrossRefGoogle Scholar
Matin, F., Piltan, F., Cheraghi, H., Sobhani, N. and Rahmani, M., “Design intelligent PID like fuzzy sliding mode controller for spherical motor,” Int. J. inf. eng. electron. bus. 6(2), 5363 (2014).Google Scholar
Sadeghian, R. and Masouleh, M. T., “Controller tuning based on optimization algorithms of a novel spherical rolling robot,” J. Mech. Sci. Technol. 30(11), 52075216 (2016).CrossRefGoogle Scholar
Kayacan, E., Kayacan, E., Ramon, H. and Saeys, W., “Adaptive Neuro-Fuzzy control of a spherical rolling robot using sliding-mode-control-theory-based online learning algorithm,” IEEE Trans. Cybern. 43(1), 170179 (2012).CrossRefGoogle ScholarPubMed
Yue, M., Liu, B., Wei, X. and Hu, P., “Adaptive sliding-mode control of spherical robot with estimated rolling resistance,” Cybernet. Syst. 45(5), 407417 (2014).CrossRefGoogle Scholar
Roozegar, M., Ayati, M. and Mahjoob, M. J., “Mathematical modelling and control of a nonholonomic spherical robot on a variable-slope inclined plane using terminal sliding mode control,” Nonlinear Dyn. 90(2), 971981 (2017).CrossRefGoogle Scholar
Andani, M. T., Ramezani, Z., Moazami, S., Cao, J., Arefi, M. M. and Zargarzadeh, H., “Observer-based sliding mode control for path tracking of a spherical robot,” Complexity 2018(1), 3129398 (2018).CrossRefGoogle Scholar
Ma, L., Sun, H. and Song, J., “Fractional-order adaptive integral hierarchical sliding mode control method for high-speed linear motion of spherical robot,” IEEE Access 8, 6624366256 (2020).CrossRefGoogle Scholar
Zhou, T., Xu, Y.-G. and Wu, B., “Smooth fractional order sliding mode controller for spherical robots with input saturation,” Appl. Sci. 10(6), 2117 (2020).CrossRefGoogle Scholar
Parizi, M. S., Salemizadehparizi, F., Vanaei, S., Karimi, A. and Komijani, H., “Hybrid super-twisting fractional-order terminal sliding mode control for rolling spherical robot,” Asian J. Control 23(5), 23432358 (2021).CrossRefGoogle Scholar
Liu, Y., Wang, Y., Guan, X., Hu, T., Zhang, Z., Jin, S., Wang, Y., Hao, J. and Li, G., “Direction and trajectory tracking control for nonholonomic spherical robot by combining sliding mode controller and model prediction controller,” IEEE Robot. Autom. Lett. 7(4), 1161711624 (2022).CrossRefGoogle Scholar
Roozegar, M., Mahjoob, M. J. and Ayati, M., “Adaptive estimation of nonlinear parameters of a nonholonomic spherical robot using a modified fuzzy-based speed gradient algorithm,” Regul. Chaotic Dyn. 22(3), 226238 (2017).CrossRefGoogle Scholar
Roozegar, M., Mahjoob, M. J. and Ayati, M., “Adaptive tracking control of a nonholonomic pendulum-driven spherical robot by using a model-reference adaptive system,” J. Mech. Sci. Technol. 32(2), 845853 (2018).CrossRefGoogle Scholar
Liu, Y., Wang, Y., Guan, X., Wang, Y., Jin, S., Hu, T., Ren, W., Hao, J., Zhang, J. and Li, G., “Multi-terrain velocity control of the spherical robot by online obtaining the uncertainties in the dynamics,” IEEE Robot. Autom. Lett. 7(2), 27322739 (2022).CrossRefGoogle Scholar
Ren, W., Wang, Y., Liu, H., Jin, S., Wang, Y., Liu, Y., Zhang, Z., Hu, T. and Li, G., “Spherical robot: A novel robot for exploration in harsh unknown environments,” IET Cyber-Syst. Robotics 5(4), e12099 (2023).CrossRefGoogle Scholar
Cai, Y., Zhan, Q. and Xi, X., “Neural network control for the linear motion of a spherical mobile robot,” Int. J. Adv. Robot. Syst. 8(4), 32 (2011).CrossRefGoogle Scholar
Hogan, F. R. and Forbes, J. R., “Modeling of spherical robots rolling on generic surfaces,” Multibody Syst. Dyn. 35, 91109 (2015).CrossRefGoogle Scholar
Roozegar, M. and Mahjoob, M. J., “Modelling and control of a non-holonomic pendulum-driven spherical robot moving on an inclined plane: Simulation and experimental results,” IET Control Theory & Applications 11(4), 541549 (2017).CrossRefGoogle Scholar
Moazami, S., Palanki, S. and Zargarzadeh, H.. Kinematics of norma, a spherical robot, rolling over 3d terrains. 2019 American Control Conference (ACC), IEEE (2019) pp. 13301335.Google Scholar
Sabet, S., Poursina, M., Nikravesh, P. E., Reverdy, P. and Agha-Mohammadi, A.-A., “Dynamic modeling, energy analysis, and path planning of spherical robots on uneven terrains,” IEEE Robotics Automation Lett. 5(4), 60496056 (2020).CrossRefGoogle Scholar
Zhan, Q., Cai, Y. and Yan, C.. Design, analysis and experiments of an omni-directional spherical robot. 2011 IEEE International Conference on Robotics and Automation, IEEE (2011) pp. 49214926.Google Scholar
Fierro, R. and Lewis, F. L., “Control of a nonholomic mobile robot: Backstepping kinematics into dynamics,” J. Robotic Syst. 14(3), 149163 (1997).3.0.CO;2-R>CrossRefGoogle Scholar
David, G. W. and III, R., “Robust Adaptive Backstepping Control for a Nonholonomic Mobile Robot,” 2001 IEEE International Conference On Systems, Man and Cybernetics. e-Systems and e-Man for Cybernetics in Cyberspace (Cat. No. 01CH37236), Vol. 5, IEEE, (2001) pp. 32413245,Google Scholar
Dierks, T. and Jagannathan, S.. Control of nonholonomic mobile robot formations: Backstepping kinematics into dynamics. 2007 IEEE international conference on control applications, IEEE (2007) pp. 9499.Google Scholar
Cai, Y., Zhan, Q. and Xi, X., “Path tracking control of a spherical mobile robot,” Mech. Mach. Theory 51, 5873 (2012).CrossRefGoogle Scholar
Bai, Y., Svinin, M. and Yamamoto, M.. Backstepping trajectory tracking control for a spherical rolling robot. 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS), IEEE (2016) pp. 298303.Google Scholar
Dong, H. Q., Lee, S.-G., Woo, S. H. and Leb, T.-A.. Back-stepping approach for rolling motion control of an under-actuated two-wheel spherical robot. 2020 20th International Conference on Control, Automation and Systems (ICCAS), IEEE (2020) pp. 233238.Google Scholar