No CrossRef data available.
Published online by Cambridge University Press: 30 July 2025
Underwater robots conducting inspections require autonomous obstacle avoidance capabilities to ensure safe operations. Training methods based on reinforcement learning (RL) can effectively develop autonomous obstacle avoidance strategies for underwater robots; however, training in real environments carries significant risks and can easily result in robot damage. This paper proposes a Sim-to-Real pipeline for RL-based training of autonomous obstacle avoidance in underwater robots, addressing the challenges associated with training and deploying RL methods for obstacle avoidance in this context. We establish a simulation model and environment for underwater robot training based on the mathematical model of the robot, comprehensively reducing the gap between simulation and reality in terms of system inputs, modeling, and outputs. Experimental results demonstrate that our high-fidelity simulation system effectively facilitates the training of autonomous obstacle avoidance algorithms, achieving a 94% success rate in obstacle avoidance and collision-free operation exceeding 5000 steps in virtual environments. Directly transferring the trained strategy to a real robot successfully performed obstacle avoidance experiments in a pool, validating the effectiveness of our method for autonomous strategy training and sim-to-real transfer in underwater robots.