Skip to main content Accessibility help
×
Home

Understanding the communication complexity of the robotic Darwinian PSO

  • Micael S. Couceiro (a1) (a2), Amadeu Fernandes (a1), Rui P. Rocha (a1) and Nuno M. F. Ferreira (a2)

Summary

An extension of the well-known Particle Swarm Optimization (PSO) to multi-robot applications has been recently proposed and denoted as Robotic Darwinian PSO (RDPSO), benefited from the dynamical partitioning of the whole population of robots. Although such strategy allows decreasing the amount of required information exchange among robots, a further analysis on the communication complexity of the RDPSO needs to be carried out so as to evaluate the scalability of the algorithm. Moreover, a further study on the most adequate multi-hop routing protocol should be conducted. Therefore, this paper starts by analyzing the architecture and characteristics of the RDPSO communication system, thus describing the dynamics of the communication data packet structure shared between teammates. Such procedure will be the first step to achieving a more scalable implementation of RDPSO by optimizing the communication procedure between robots. Second, an ad hoc on-demand distance vector reactive routing protocol is extended based on the RDPSO concepts, so as to reduce the communication overhead within swarms of robots. Experimental results with teams of 15 real robots and 60 simulated robots show that the proposed methodology significantly reduces the communication overhead, thus improving the scalability and applicability of the RDPSO algorithm.

Copyright

Corresponding author

*Corresponding author. E-mail: micaelcouceiro@gmail.com

References

Hide All
1.Parker, L. E., “Multiple Mobile Robot Systems,” In: Springer Handbook of Robotics (Siciliano, B. and Khatib, O., eds.) (Springer, New York, NY, 2008), pp. 921941.
2.Mataric, M. J., “Issues and approaches in the design of collective autonomous agents,” Robot. Auton. Syst. 16, 321331 (1995).
3.Onn, S. and Tennenholtz, M., “Determination of social laws for multi-agent mobilization,” Artif. Intell. 95, 155167 (1997).
4.Werger, B. B., “Cooperation without deliberation: A minimal behavior-based approach to multi-robot teams,” Artif. Intell. 110 (2), 293320 (1999).
5.Kernbach, S., Häbe, D., Kernbach, O., Thenius, R., Radspieler, G., Kimura, T. and Schmickl, T., “Adaptive collective decision-making in limited robot swarms without communication,” Int. J. Robot. Res. 32 (1), 3555 (2013).
6.Huber, M. J. and Durfee, E., “Deciding When to Commit to Action During Observation-Based Coordination,” Proceedings of the First International Conference on Multi-Agent Systems (1995) pp. 163–170.
7.Tambe, M., “Towards flexible teamwork,” J. Artif. Intell. Res. 7, 83124 (1997).
8.Parker, L. E., “ALLIANCE: An Architecture for fault-tolerant multi-robot cooperation,” IEEE Trans. Robot. Autom. 14 (2), 220240 (1998).
9.Couceiro, M. S., Rocha, R. P. and Ferreira, N. M. F., “Ensuring Ad Hoc Connectivity in Distributed Search with Robotic Darwinian Swarms,” Proceedings of the IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR2011), Kyoto, Japan (2011) pp. 284289.
10.Sheng, W., Yang, Q., Tan, J. and Xi, N., “Distributed multi-robot coordination in area exploration,” Robot. Auton. Syst. 54, 945955 (2006).
11.Tardioli, D. and Villarroel, J. L., “Real Time Communications Over 802.11: RT-WMP,” IEEE Internatonal Conference on Mobile Ad Hoc and Sensor Systems (2007) pp. 1–11.
12.Couceiro, M. S., Figueiredo, C. M., Rocha, R. P. and Ferreira, N. M. F., “Darwinian Swarm Exploration Under Communication Constraints: Initial Deployment and Fault-Tolerance Assessment,” Robot. Auton. Syst. (2013; In Press).
13.Couceiro, M. S., Figueiredo, C. M., Luz, J. M. A., Ferreira, N. M. F. and Rocha, R. P., “A low-cost educational platform for swarm robotics,” Int. J. Robots Educ. Art 2 (1), 115 (Feb. 2012).
14.Sabattini, L., Chopra, N. and Secchi, C., “On Decentralized Connectivity Maintenance for Mobile Robotic Systems,” 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), Orlando, FL (2011) pp. 988993.
15.Casteigts, A., Albert, J., Chaumette, S., Nayak, A. and Stojmenovic, I., “Biconnecting a Network of Mobile Robots Using Virtual Angular Forces,” IEEE 72nd Vehicular Technology Conference, Fall (VTC 2010-Fall), Ottawa, ON (2010) pp. 10381046.
16.Rocha, R. P., “Efficient Information Sharing and Coordination in Cooperative Multi-Robot Systems,” Proceedings of II European-Latin-American Workshop on Engineering Systems (SELASI'2006), Porto, Portugal (2006) pp. 16.
17.Hereford, J. and Siebold, M., “Multi-robot search using a physically embedded particle swarm optimization,” Int. J. Comput. Intell. Res. 4 (2), 197209 (2008).
18.Shah, K. and Meng, Y., “Communication-Efficient Dynamic Task Scheduling for Heterogeneous Multi-Robot Systems,” Proceedings of the 2007 IEEE International Symposium on Computational Intelligence in Robotics and Automation, Jacksonville, FL (2007) pp. 230235.
19.Abedi, O., Fathy, M. and Taghiloo, J., “Enhancing AODV routing protocol using mobility parameters in VANET,” IEEE/ACS International Conference on Computer Systems and Applications, (AICCSA 2008), Doha, Qatar (2008) pp. 229235.
20.Asenov, H. and Hnatyshin, V., “GPS-Enhanced AODV Routing,” Proceedings of the International Conference on Wireless Networks (ICWN'09), Las Vegas, NV (2009) pp. 17.
21.Ayash, M., Mikki, M. and Kangbin, Y., “Improved AODV Routing Protocol to Cope with High Overhead in High Mobility MANETs,” Sixth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), Palermo, Sicily (2012) pp. 244251.
22.Couceiro, M. S., Rocha, R. P. and Ferreira, N. M. F., “A Novel Multi-Robot Exploration Approach based on Particle Swarm Optimization Algorithms,” IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR 2011), Kyoto, Japan (2011) pp. 327332.
23.Tillett, J., Rao, T. M., Sahin, F., Rao, R. and Brockport, S., “Darwinian Particle Swarm Optimization,” Proceedings of the 2nd Indian International Conference on Artificial Intelligence (2005) pp. 1474–1487.
24.Kennedy, J. and Eberhart, R., “A New Optimizer Using Particle Swarm Theory,” Proceedings of the IEEE Sixth International Symposium on Micro Machine and Human Science (1995) pp. 39–43.
25.Couceiro, M. S., Martins, F. M. L., Rocha, R. P. and Ferreira, N. M. F., “Introducing the Fractional Order Robotic Darwinian PSO,” Proceedings of the 9th International Conference on Mathematical Problems in Engineering, Aerospace and Sciences (ICNPAA'2012), Vienna, Austria (2012) pp. 242252.
26.Couceiro, M. S., Machado, J. A. T., Rocha, R. P. and Ferreira, N. M. F., “A Fuzzified Systematic Adjustment of the Robotic Darwinian PSO,” Robot. Auton. Syst. 60 (12), 16251639 (2012).
27.Podlubny, I., Fractional Differential Equations, Mathematics in Science and Engineering, vol. 198 (Academic Press, San Diego, CA, 1999).
28.Couceiro, M. S., Luz, J. M. A., Figueiredo, C. M. and Ferreira, N. M. F., “Modeling and control of biologically inspired flying robots,” J. Robotica 30 (1), 107121 (2012).
29.Jatmiko, W., Sekiyama, K. and Fukuda, T., “Modified particle swarm robotic odor source localization in dynamic environments,” Int. J. Intell. Control Syst. 11 (2), 176184 (2006).
30.Marjovi, A. and Marques, L., “Multi-robot olfactory search in structured environments,” Robot. Auton. Syst. 52 (11), 867881 (2011).
31.Miller, L. E., “Multihop Connectivity of Arbitrary Networks,” Project Report, Wireless Communication Technologies Group (NIST), Gaithersburg, MD, . (2001).
32.Rybski, P. E., Papanikolopoulos, N. P., Stoeter, S. A., Krantz, D. G., Yesin, K. B., Gini, M., Voyles, R., Hougen, D. F., Nelson, B. and Erickson, M. D., “Enlisting rangers and scouts for reconnaissance and surveillance,” IEEE Robot. Autom. Mag. 7 (4), 1424 (2000).
33.Kulkarni, R. V. and Venayagamoorthy, G. K., “Bio-inspired algorithms for autonomous deployment and localization of sensor nodes,” IEEE Trans. Syst. Man Cybern. 40 (6), 663675 (2010).
34.Couceiro, M. S., Rocha, R. P., Figueiredo, C. M., Luz, J. M. A. and Ferreira, N. M. F., “Multi-Robot Foraging Based on Darwin's Survival of the Fittest,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'2012), Vilamoura, Algarve (2012).
35.Natesapillai, K., Palanisamy, V. and Duraiswamy, K., “A performance evaluation of proactive and reactive protocols using NS2 simulation,” Int. J. Eng. Res. Ind. Appl. 2 (11), 309326 (2009).
36.Lee, S. J., Gerla, M. and Toh, C. K., “A simulation study of table-driven and on-demand routing protocols for mobile ad hoc networks,” Network. IEEE 13 (4), 4854 (1999).
37.Bertocchi, F., Bergamo, P., Mazzini, G. and Zorzi, M., “Performance Comparison of Routing Protocols for Ad Hoc Networks,” IEEE GLOBECOM, San Fransisco, CA (2003) pp. 10331037.
38.Wu, X., Xu, H., Sadjadpour, H. R. and Garcia-Luna-Aceves, J. J., “Proactive or Reactive Routing: A Unified Analytical Framework in MANETs,” Proceedings of 17th International Conference on Computer Communications and Networks (ICCCN'08), St. Thomas, VI (2008) pp. 17.
39.Perkins, C. E. and Royer, E. M., “Ad Hoc On-Demand Distance Vector Routing,” In: Mobile Computing Systems and Applications (1999) pp. 90–100.
40.Digi International (Online) (2007). Available at: http://alumni.ipt.pt/~lrafael/manual_XBee_Series2_OEM_RF-Modules_ZigBee.pdf. Accessed July 28, 2013.
41.Broch, J., Maltz, D. A., Johnson, D. B., Hu, Y.-C. and Jetcheva, J., “A Performance Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols,” Proceedings of the Fourth Annual ACM/IEEE International Conference on Mobile Computing and Networking (MobiCom'98), Dallas, TX (1998) pp. 8597.
42.Couceiro, M. S., Martins, F. M. L., Rocha, R. P. and Ferreira, N. M. F., “Mechanism and convergence analysis of a multi-robot swarm,” J. Intell. Robot. Syst. (2013; In Press).
43.Beni, G., “From Swarm Intelligence to Swarm Robotics,” Proceedings of the Swarm Robotics Workshop, Heidelberg, Germany (2004) pp. 19.
44.University of Technology. (Online) (2001). Available http://www.uamt.feec.vutbr.cz/robotics/simulations/amrt/simrobot_en.html. Accessed July 28, 2013.
45.Couceiro, M. S., Portugal, D. and Rocha, R. P., “A Collective Robotic Architecture in Search and Rescue Scenarios,” Proceedings of the 28th Symposium On Applied Computing (SAC2013), Coimbra, Portugal (2013) pp. 6469.
46.Luca, D. D., Mazzenga, F., Monti, C. and Vari, M., “Performance Evaluation of Indoor Localization Techniques Based on RF Power Measurements from Active or Passive Devices,” EURASIP J. Appl. Signal Process. 2006, 111 (2006).
47.Sklar, B., “Rayleigh fading channels in mobile digital communication systems. I. Characterization,” IEEE Commun. Mag. 35 (7), 90100 (1997).
48.Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S., Zufferey, J. C., Floreano, D. and Martinoli, A., “The E-Puck – A Robot Designed for Education in Engineering,” Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions (2009) pp. 59–65.
49.Tsai, W., “Social structure of “coopetition” within a multiunit organization: Coordination, competition, and intraorganizational knowledge sharing,” Organ. Sci. 13 (2), 179190 (2002).
50.Bonabeau, E., Dorigo, M. and Theraulaz, G., Swarm Intelligence: From Natural to Artificial Systems (Oxford University Press, New York, NY, 1999).

Keywords

Understanding the communication complexity of the robotic Darwinian PSO

  • Micael S. Couceiro (a1) (a2), Amadeu Fernandes (a1), Rui P. Rocha (a1) and Nuno M. F. Ferreira (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed