Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T05:23:44.040Z Has data issue: false hasContentIssue false

Herbicides as Ripeners for Sugarcane

Published online by Cambridge University Press:  20 January 2017

Caleb D. Dalley*
Affiliation:
USDA-ARS, Sugarcane Research Laboratory, 5883 USDA Rd., Houma, LA 70360
Edward P. Richard Jr.
Affiliation:
USDA-ARS, Sugarcane Research Laboratory, 5883 USDA Rd., Houma, LA 70360
*
Corresponding author's E-mail: caleb.dalley@ars.usda.gov

Abstract

Chemical ripening of sugarcane is an important component to profitable sugar production in the United States as well as other sugarcane industries throughout the world. Harvesting of sugarcane often begins before the sugarcane reaches the desirable maturity level. This is especially true in the Louisiana sugarcane industry where the window for harvesting is limited because of the risk of freezing temperatures encountered in a temperate climate. Research on the application of chemicals, mostly of herbicide origin, to enhance sucrose accumulation (ripening) or limit flowering to conserve stored sucrose has been conducted for more than 60 yr. The only sugarcane ripener currently registered for use in the United States is glyphosate applied before harvest. The herbicide fluazifop is used as the primary ripener of sugarcane in South Africa. The herbicides glyphosate, fluazifop, and sulfometuron-methyl and the growth regulators ethephon and trinexapac-ethyl are registered for use in Brazil. There is a continuing need to evaluate sugarcane ripeners to increase the utility of currently registered ripeners and to find additional ripeners for use by sugarcane industries. The need for alternatives to glyphosate is especially critical before a glyphosate-tolerant sugarcane can be utilized to improve control of problematic weeds.

Type
Symposium
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Amrhein, N., Deus, B., Gehrke, P., and Steinrucken, H. C. 1980. The site of the inhibition of the shikimate pathway by glyphosate: II. interference of glyphosate with chorismate formation in vivo and in vitro. Plant Physiol. 66:830834.10.1104/pp.66.5.830Google Scholar
Burton, J. D., Gronwald, J. W., Somers, D. A., Gengenbach, B. G., and Wyse, D. L. 1989. Inhibition of corn acetyl-CoA carboxylase by cyclohexanedione and aryloxyphenoxy propionate herbicides. Pest. Biochem. Physiol. 34:7685.Google Scholar
Caputo, M. M., de Almeida Silva, M., de Beauclair, E. G. F., and de Castro Gava, G. J. 2007. Acumulación de sacarosa, productividad y floración de caña de azúcar bajo el uso de reguladores vegetales; sugarcane sucrose accumulation, productivity and flowering using plant regulators. Interciencia. 32:834840.Google Scholar
Clowes, M. St J. 1980. Ripening activity of the glyphosate salts Mon 8000 and Roundup. Proc. Int. Soc. Sugar Cane Technol. 17 (1):676693.Google Scholar
de Almeida, J. C. V., Sanomya, R., Leite, C. F., and Cassinelli, N. F. 2003. Eficiência agronômica de sulfometuron-methyl como maturador na cultura da cana-de-açúcar (Saccharum spp). Revista STAB. 21:3637.Google Scholar
Donaldson, R. A. 1999. Sugar cane ripening in South Africa—review of past decade. Proc. Int. Soc. Sugar Cane Technol. 23:2226.Google Scholar
Donaldson, R. A. and Van Staden, J. 1989. A review of chemical used as ripeners of sugarcane in South Africa. Proc. Int. Soc. Sugar Cane Technol. 20:647655.Google Scholar
Donaldson, R. A. and Van Staden, J. 1995. Some effects of the ripener Fusilade Super and drought stress on stalk components and leaf emergence of sugarcane. Proc. S. Afr. Sugar Technol. Assoc. 69:4145.Google Scholar
Dusky, J. A., Kang, M. S., Glaz, B., and Miller, J. D. 1986. Response of eight sugarcane cultivars to glyphosine and glyphosate ripeners. Plant Growth Reg. 4:225235.10.1007/BF02266960Google Scholar
Eggleston, G., Legendre, B. L., and Tew, T. 2004. Indicators of freeze-damaged sugarcane varieties which can predict processing problems. J. Food Chem. 87:119133.10.1016/j.foodchem.2003.11.004Google Scholar
EPA (Environmental Protection Agency) 1978. Memorandum: Application for an Experimental Use Permit to Test MON-8000 as a Plant Growth Regulator on Sugarcane and an Application for Temporary Tolerances of Glyphosate on Sugarcane. http://www.epa.gov/pesticides/foia/reviews/103601/103603-001.pdf. Accessed: September 28, 2009.Google Scholar
EPA (Environmental Protection Agency) 1980. Memorandum: PP #8E2122/FAP #9H5195. Glyphosate (Sodium Sesqui Salt) in or on Sugarcane. http://www.epa.gov/pesticides/foia/reviews/103601/103603-007.pdf. Accessed: September 28, 2009.Google Scholar
Frost, K. R. Jr. 1976. Ripening effects of glyphosine: results of experimental permit testing in Louisiana 1973 and 1974. Proc. Am. Soc. Sugar Cane Technol. 5:5661.Google Scholar
Guimarães, E. R., Mutton, M. A., Pizauro, J. M. Jr., and Mutton, M. J. R. 2005. Sugarcane growth, sucrose accumulation and invertase activities under trinexapac-ethyl treatment. Científica Jaboticabal. 33:2026.Google Scholar
Hilton, H. W., Osgood, R. V., and Maretzki, A. 1980. Some aspects of Mon 8000 as a sugarcane ripener to replace Polaris. Proc. Int. Soc. Sugar Cane Technol. 17:652661.Google Scholar
Hollander, H. and Amrhein, N. 1980. The site of the inhibition of the shikimate pathway by glyphosate: I. inhibition by glyphosate of phenylpropanoid synthesis in buckwheat (Fagopyrum esculentum Moench). Plant Physiol. 66:823829.Google Scholar
Jaworski, E. G. 1972. Mode of action of N-phosphonomethylglycine. Inhibition of aromatic amino acid biosynthesis. J. Agric. Food Chem. 20:11951198.Google Scholar
Johnson, B. J. 1992. Response of bermudagrass (Cynodon spp.) to CGA 163935. Weed Technol. 6:577582.Google Scholar
Legendre, B. L. 1974. Testing chemical ripeners for sugarcane in Louisiana. Proc. Am. Soc. Sugar Cane Technol. 3:2833.Google Scholar
Legendre, B. L. 1975. Ripening of sugarcane: effects of sunlight, temperature, and rainfall. Crop Sci. 15:349352.Google Scholar
Legendre, B. L. and Finger, C. K. 1987. Response of sugarcane varieties to the chemical ripener glyphosate. Proc. Plant Growth Reg. Soc. Am. 14:479484.Google Scholar
Legendre, B. L. and Martin, F. A. 1977. Ripening studies with glyphosine in Louisiana sugarcane. Proc. Am. Soc. Sugar Cane Technol. 6:6264.Google Scholar
Legendre, B. L., Martin, F. A., and Dill, G. M. 1980. Preliminary investigations on the effects of Polado on regrowth of sugarcane in Louisiana. Proc. Plant Growth Reg. Workgroup. 7:148.Google Scholar
Leite, G. H. P. and Crusciol, C. A. C. 2008. Reguladores vegetais no desenvolvimento e produtividade da cana-de-açúcar; growth regulators in the development and productivity of sugarcane. Pesq. Agropec. Bras. 43:9951001.Google Scholar
Li, Y. and Solomon, S. 2003. Ethephon: a versatile growth regulator for the sugar cane industry. Sugar Tech. 5:213223.10.1007/BF02942476Google Scholar
Lingle, S. E. 1999. Sugar metabolism during growth and development in sugarcane internodes. Crop Sci. 39:480486.Google Scholar
Maretzki, A., Thom, M., and Moore, P. H. 1976. Growth patterns and carbohydrate distribution in sugarcane plants treated with an amine salt of glyphosate. Hawaiian Planters' Record. 59:2132.Google Scholar
Meinzer, F. C. and Moore, P. H. 1988. Effect of apoplastic solutes on water potential in elongating sugarcane leaves. Plant Physiol. 86:873879.Google Scholar
Millhollon, R. W. and Legendre, B. L. 1996. Sugarcane yield as affected by annual glyphosate ripener treatments. Proc. Am. Soc. Sugar Cane Technol. 16:716.Google Scholar
Millhollon, R. W. and Legendre, B. L. 2000. Growth and yield response of Louisiana sugarcane cultivars to annual preharvest treatments with the ripener glyphosate. Sugar Cane Int. 18:59.Google Scholar
Morgan, T., Jackson, P., McDonald, L., and Holtum, J. 2007. Chemical ripeners increase early-season sugar content in a range of sugarcane varieties. Aust. J. Agric. Res. 58:233241.Google Scholar
Nakayama, K., Kamiay, Y., Kobayashi, M., Abe, H., and Sakurai, A. 1990. Effects of a plant-growth regulator, prohexadione, on the biosynthesis of gibberellins in cell-free systems derived from immature seeds. Plant Cell Physiol. 31:11831190.Google Scholar
Nomura, N., Hayamichi, Y., and Hilton, W. 1986. Some physiological effects from glyphosate applied to sugarcane foliage. Proc. Int. Soc. Sugar Cane Technol. 19:284297.Google Scholar
Rademacher, W. 2000. Growth retardants: Effect of gibberellin biosynthesis and other metabolic pathways. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51:501531.Google Scholar
Rainbolt, C. 2005a. Evaluation of trinexapac-ethyl for use as a ripener in Florida sugarcane. Proc. Am. Soc. Sugar Cane Technol. 25:118.Google Scholar
Rainbolt, C. 2005b. Napiergrass: Biology and Control in Sugar Cane. Gainesville, FL: Institute of Food and Agricultural Sciences. The University of Florida. SS-AGR-242 3p. http://edis.ifas.ufl.edu/pdffiles/SC/SC07100.pdf. Accessed: September 28, 2009.Google Scholar
Resende, P. A. P., Soares, J. E., and Hudetz, M. 2000. Moddus, a plant growth regulator and management tool for sugarcane production in Brazil. Int. Sugar J. 102:59.Google Scholar
Rice, E. R., Holder, D. G., and Littles, T. D. 1984. Recent tests on chemical ripening and regrowth of two sugarcane varieties in Florida. Sugar J. 47:911.Google Scholar
Richard, E. P. Jr., Dalley, C. D., and Viator, R. P. 2006. Ripener influences on sugarcane yield in Louisiana. Proc. Am. Soc. Sugar Cane Technol. 26:5455.Google Scholar
Servaites, J. C., Tucci, M. A., and Geiger, D. R. 1987. Glyphosate effects on carbon assimilation, ribulose bisphosphate carboxylase activity, and metabolite levels in sugar beet leaves. Plant Physiol. 85:370374.Google Scholar
Siehl, D. L. 1997. Inhibitors of EPSP synthase, glutamine synthase and histidine synthesis. Pages 3767. in Roe, R. M., Burton, J. D., and Kuhr, R. J. eds. Herbicide Activity: Toxicology, Biochemistry and Molecular Biology. Amsterdam: IOS Press.Google Scholar
Steinrucken, H. C. and Amrhein, N. 1980. The herbicide glyphosate is a potent inhibitor of 5-enolpyruvyl shikimate acid-3-phosphate synthase. Biochim. Biophys. Res. Commun. 94:12071212.Google Scholar
Su, L. Y., Cruz, A. D., Moore, P. H., and Maretzki, A. 1992. The relationship of glyphosate treatment to sugar metabolism in sugarcane: new physiological insights. J. Plant Physiol. 140:168173.Google Scholar
USDA. National Agriculture Statistics Service http://www.nass.usda.gov/Statistics_by_Subject/index.asp#. Accessed: June 9, 2009.Google Scholar
Viator, R. P., Dalley, C. D., and Richard, E. P. Jr. 2009. Early harvest affects rationing ability in Louisiana. Sugar J. 71:1214.Google Scholar
Watson, E. C. and DeStefano, R. P. 1986. The use of fluazifop-butyl and sethoxydim as sugarcane ripeners. Proc. Am. Soc. Sugar Cane Technol. 6:5658.Google Scholar
Yang, S. F. 1969. Ethylene evolution from 2-chloroethylphosphonic acid. Plant Physiol. 44:12031204.10.1104/pp.44.8.1203Google Scholar
Zapiola, M. L., Chastain, T. G., Garbacik, C. J., Silberstein, T. B., and Young, W. C. Jr. III. 2006. Trinexapac-ethyl and open field burning maximize seed yield in creeping red fescue. Agron. J. 98:14271434.Google Scholar