Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T23:29:07.164Z Has data issue: false hasContentIssue false

Weed Science Beyond the Weeds: The Role of Integrated Weed Management (IWM) in Agroecosystem Health

Published online by Cambridge University Press:  12 June 2017

Clarence J. Swanton
Affiliation:
Dep. of Crop Science, Univ. Guelph, Guelph, ON N1G 2W1, Canada
Stephen D. Murphy
Affiliation:
Dep. of Crop Science, Univ. Guelph, Guelph, ON N1G 2W1, Canada

Abstract

Integrated weed management (IWM) research has focused on how crop yields and weed interference are affected by changes in management, e.g., tillage, herbicide application timing and rates, cover crops, and planting patterns. Acceptance of IWM will depend on recommendation of specific strategies that manage weeds and maintain crop productivity; such research will and should continue. However, IWM needs to move from a descriptive to a predictive phase if long-term strategies are to be adopted. Linking management changes with crop-weed modeling that includes such components as weed population dynamics and the ecophysiological basis of competition will help predict future weed problems and solutions and the economic risks and benefits of intervention. Predictive approaches would help incorporate IWM into models of the processes that occur in agricultural systems at wider spatial and temporal scales, i.e., in agroecosystems comprised of the interactions among organisms (including humans) and the environment. It is at these larger scales that decisions about management are initiated and where questions about the long-term consequences and constraints of IWM and agriculture are often asked. These questions can be addressed by agroecosystem health, an approach that integrates biophysical, social, and economic concerns and recognizes that agriculture is part of a world with many complex subsystems and interactions. Indicators are used to examine the status of an agroecosystem, e.g., whether or not it contains all that is necessary to continue functioning. Indicators include soil quality, crop productivity, and water quality; all of these are related to the rationale of IWM, hence IWM can be linked to agroecosystem health. Ancillary effects of using IWM relate to other indicators such as diversity and energy efficiency. Linking IWM to agroecosystem health has at least two benefits: (1) predictive models within IWM can be incorporated into larger agroecosystem models to explore hitherto unforseen problems or benefits of IWM, and (2) the relevance and benefits of IWM should become clearer to the public and government agencies who otherwise might not examine how IWM promotes many of the larger social, economic and environmental goals being promulgated.

Type
Symposium
Copyright
Copyright © 1996 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Androw, D. A. 1988. Management of weeds for insect manipulation in agroecosystems. Pages 265301 in Altieri, M. A., and Liebman, M. (eds.). Weed management in agroecosystems: Ecological approaches. CRC Press, Boca Raton, Florida.Google Scholar
2. Ball, B. C., Lang, R. W., Robertson, E. A. G., and Franklin, M. F. 1994. Crop performance and soil conditions on imperfectly drained loams after 20–25 years of conventional tillage or direct drilling. Soil Tillage Res. 31: 97118.CrossRefGoogle Scholar
3. Ball, D. A. 1992. Weed seedbank response to tillage, herbicides and crop rotation sequence. Weed Sci 40: 654659.CrossRefGoogle Scholar
4. Ball, D. A. and Miller, S. D. 1993. Cropping history, tillage and herbicide effects on weed flora composition in irrigated corn. Agron. J. 85: 817821.CrossRefGoogle Scholar
5. Ball, D. A. and Shaffer, M. A. 1993. Simulating resource competition in multispecies agricultural plant communities. Weed Res. 33: 299310.CrossRefGoogle Scholar
6. Baudry, J. 1989. Interactions between agricultural and ecological systems at the landscape level. Agric. Ecosys. Environ. 27: 119130.CrossRefGoogle Scholar
7. Bawden, R. J. 1991. Systems approaches to agricultural development: the Hawksbury experience. Agric. Syst. 40: 153176.CrossRefGoogle Scholar
8. Bellingder, R. R., Gummesson, G., and Karlsson, C. 1994. Percentage-driven government mandates for pesticide reduction: the Swedish model. Weed Technol. 8: 350359.CrossRefGoogle Scholar
9. Bruhn, C., Peterson, S., Phillips, P., and Sakovidh, N. 1992. Consumer information on integrated pest management. J. Food Safety 12: 315326.CrossRefGoogle Scholar
10. Brust, G. E. and House, G. J. 1989. Weed seed destruction by arthropods and rodents in low-input soybean agroecosystems. Am. J. Alt. Agric. 3: 1925.CrossRefGoogle Scholar
11. Bugbee, B. and Monje, O. 1992. The limits of crop productivity. BioScience 42: 494502.CrossRefGoogle ScholarPubMed
12. Buhler, D. D., Gunsolus, J. L., and Ralston, D. F. 1992. Integrated weed management techniques to reduce herbicide inputs in soybean. Agron. J. 84: 973978.CrossRefGoogle Scholar
13. Buhler, D. D., Stoltenberg, D. E., Becker, R. L., and Gunsolus, J. L. 1994. Perennial weed populations after 14 years of variable tillage and cropping practices. Weed Sci. 42: 205209.CrossRefGoogle Scholar
14. Camboni, S. M. and Napier, T. L. 1993. Factors affecting use of conservation farming practices in east central Ohio. Agric. Ecosys. Environ. 45: 7994.CrossRefGoogle Scholar
15. Cannell, R. Q. and Hawes, J. D. 1994. Trends in tillage practices in relation to sustainable crop production with special reference to temperate climates. Soil Tillage Res. 30: 245282.CrossRefGoogle Scholar
16. Caporali, F., and Onnis, A. 1992. Validity of rotation as an effective agroecological principle for a sustainable agriculture. Agric. Ecosys. Environ. 41: 101113.CrossRefGoogle Scholar
17. Chandler, K., Murphy, S. D., and Swanton, C. J. 1994. Effect of tillage and glyphosate on control of quackgrass (Elytrigia repens). Weed Technol. 8: 450456.CrossRefGoogle Scholar
18. Chikoye, D. and Swanton, C. J. 1995. Evaluation of three empirical models depicting Ambrosia artemisiifolia competition in white bean. Weed Res. 35: 421428.CrossRefGoogle Scholar
19. Chikoye, D., Weise, S. F., and Swanton, C. J. 1996. Influence of common ragweed (Ambrosia artemisiifolia) time of emergence and density on white bean (Phaseolus vulgaris L.). Weed Sci. 43: 375380.CrossRefGoogle Scholar
20. Clements, D. R., Weise, S. F., and Swanton, C. J. 1994. Integrated weed management and weed species diversity. Phytoprot. 75: 118.CrossRefGoogle Scholar
21. Clements, D. R., Weise, S. F., Brown, R., Stonehouse, D. P., Hume, D. J., and Swanton, C. J. 1995. Energy analysis of tillage and herbicide inputs in alternative weed management systems. Agric. Ecosyst. Environ. 52: 119128.CrossRefGoogle Scholar
22. Coble, H. D. and Mortensen, D. A. 1992. The threshold concept and its application to weed science. Weed Technol. 6: 191195.CrossRefGoogle Scholar
23. Conway, G. R. 1987. The properties of agroecosystems. Agric. Syst. 24: 95117.CrossRefGoogle Scholar
24. Costanza, R., Norton, B. G., and Haskell, B. J. (eds.). 1992. Ecosystem Health. Island Press, Washington, D.C. 269 pp.Google Scholar
25. Crossley, D. A. Jr., Coleman, D. C., and Hendrix, P. F. 1989. The importance of the fauna in agricultural soils: Research approaches and perspectives. Agric. Ecosys. Environ. 27: 4755.CrossRefGoogle Scholar
26. Dahlberg, K. A. 1992. The conservation of biological diversity and U.S. agriculture: goals, institutions, and policies. Agric. Ecosys. Environ. 42: 177193.CrossRefGoogle Scholar
27. Derksen, D. A., Lafond, G. P., Thomas, A. G., Loeppky, H. A., and Swanton, C. J. 1993. Impact of agronomic practices on weed communities: tillage systems. Weed Sci. 41: 409417.CrossRefGoogle Scholar
28. Derksen, D. A., Thomas, A. G., Lafond, G. P., Loeppky, H. A., and Swanton, C. J. 1994. The influence of agronomic practices on weed communities: fallow within tillage systems. Weed Sci. 42: 184194.CrossRefGoogle Scholar
29. Dieleman, J. A. 1994. Modelling pigweed (Amaranthus spp.) interference in soybean (Glycine max (L.) Merr.) and determining decision rules for postemergence pigweed control. , Univ. of Guelph, Guelph, ON. 123 pp.Google Scholar
30. Eadie, A., Swanton, C. J., Shaw, J., and Anderson, G. W. 1992. Banded herbicide applications in a modified no-till corn production system. Weed Technol. 6: 535542.CrossRefGoogle Scholar
31. Eadie, A., Swanton, C. J., Shaw, J., and Anderson, G. W. 1992. Integration of cereal cover crops in ridge-tillage corn production. Weed Technol. 6: 553560.CrossRefGoogle Scholar
32. Edwards, C. A. 1989. The importance of integration in sustainable agricultural systems. Agric. Ecosys. Environ. 27: 2535.CrossRefGoogle Scholar
33. Elliott, E. T. and Cole, C. V. 1990. A perspective on agroecosystem science. Ecology 70: 15971602.CrossRefGoogle Scholar
34. Fawcett, R. S., Christensen, B. R., and Tierney, D. P. 1994. The impact of conservation tillage on pesticide runoff into surface water: a review and analysis. J. Soil Water Cons. 49: 126135.Google Scholar
35. Forcella, F. 1993. Seedling emergence model for velvetleaf. Agron. J. 85: 929933.CrossRefGoogle Scholar
36. Forcella, F., Eradat-Oskoui, K., and Wagner, S. W. 1993. Applications of weed seedbank ecology to low-input crop management. Ecol. Applic. 3: 7483.CrossRefGoogle ScholarPubMed
37. Froud-Williams, R. J. 1988. Changes in weed flora with different tillage and agronomic management systems. Pages 213236 in Altieri, M. A. and Liebman, M., eds. Weed Management in Agroecosystems: Ecological Approaches. CRC Press, Boca Raton. Florida.Google Scholar
38. Gall, G.A.E. and Orians, G. H. 1992. Agriculture and biological conservation. Agric. Ecosys. Environ. 42: 18.CrossRefGoogle Scholar
39. Gallopin, G. C. 1994. Agroecosystem health: A guiding concept for agricultural research? Pages 5165 in Nielsen, O., O. (ed.). Agroecosystem health: Proceedings of an international workshop. University of Guelph, Guelph, Canada.Google Scholar
40. Ghersa, C. M., Roush, M. L., Radosevich, S. R., and Cordray, S. M. 1994. Coevolution of agroecosystems and weed management. BioScience 44: 8594.CrossRefGoogle Scholar
41. Giampietro, M. 1994. Sustainability and technological development in agriculture. BioScience 44: 677689.CrossRefGoogle Scholar
42. Gianessi, L. P. and Bridges, D. C. 1992. Influencing agricultural policy: symposium introduction. Weed Technol. 8: 871872.CrossRefGoogle Scholar
43. Hall, M., Swanton, C. J., and Anderson, G. W. 1992. The critical period of weed control in corn (Zea mays). Weed Sci. 40: 441447.CrossRefGoogle Scholar
44. Hamill, A. S., Surgeoner, G. A., and Roberts, W. P. 1994. Herbicide reduction in North America: In Canada, an opportunity for motivation and growth in weed management. Weed Technol. 8: 366371.CrossRefGoogle Scholar
45. Hollingsworth, C. S., Pascall, M. J., Cohen, N. L., and Coli, W. M. 1993. Support in New England for certification and labelling of produce grown under integrated pest management. Am. J. Alt. Agric. 8: 7884.CrossRefGoogle Scholar
46. House, G. J., and Brust, G. E. 1989. Ecology of low-input, no-tillage agroecosystems. Agric. Ecosys. Environ. 27: 331345.CrossRefGoogle Scholar
47. Ikerd, J. E. 1993. The need for a systems approach to sustainable agriculture. Agric. Ecosys. Environ. 46: 147160.CrossRefGoogle Scholar
48. Jordan, N. 1992. Weed demography and population dynamics: implications for threshold management. Weed Technol. 6: 184190.CrossRefGoogle Scholar
49. Jordan, N. 1993. Prospects for weed control through crop interference. Ecol. Applic. 3: 8491.CrossRefGoogle ScholarPubMed
50. Karlen, D. L., Wollenhaupt, N. C., Erbach, D. C., Berry, E. C., Swan, J. B., Eash, N. S., and Jordahl, J. L. 1994. Crop residue effects on soil quality following 10-years of no-till corn. Soil Tillage Res. 31: 149167.CrossRefGoogle Scholar
51. Knezevic, S. Z., Weise, S. F., and Swanton, C. J. 1994. Interference of redroot pigweed (Amaranthus retroflexus) in corn (Zea mays). Weed Sci. 42: 568573.CrossRefGoogle Scholar
52. Knezevic, S. Z., Weise, S. F., and Swanton, C. J. 1995. Comparison of empirical models depicting density of Amaranthus retroflexus, and relative leaf area as predictors of yield loss in grain corn (Zea mays). Weed Res. 35: 207214.CrossRefGoogle Scholar
53. Kremer, R. J. 1993. Management of weed seed banks with microorganisms. Ecol. Applic. 3: 4252.CrossRefGoogle ScholarPubMed
54. Kropff, M. J. and Lotz, L. A. P. 1992. Systems approaches to quantify crop-weed interactions and their application in weed management. Agric. Sys. 40: 265282.CrossRefGoogle Scholar
55. Kropff, M.J., Weaver, S. E., and Smits, M. A. 1992. On the use of ecophysiological models for crop-weed competition. I. Relations between weed density, relative time of weed emergence, relative leaf area and yield loss. Weed Sci. 40: 296301.Google Scholar
56. Kropff, M. J., Spitters, C.J.T., Schneiders, B. J., Joenje, W., and de Groot, W. 1992. An ecophysiological model for interspecific competition, applied to the influence of Chenopodium album L. on sugar beet. II. Model evaluation. Weed Res. 32: 451463.Google Scholar
57. Lawson, H. M. 1994. Changes in pesticide use in the United Kingdom: policies, results, and long-term implications. Weed Technol. 8: 360365.CrossRefGoogle Scholar
58. Lowrance, R. and Groffman, P. M. 1988. Impacts of low and high input agriculture in landscape structure and function. Am. J. Alt. Agric. 2: 175183.CrossRefGoogle Scholar
59. Malik, V. S., Swanton, C. J., and Michaels, T. E. 1993. Interaction of white bean (Phaseolus vulgaris L.) cultivars, row spacing and seeding density with annual weeds. Weed Sci. 41: 6268.CrossRefGoogle Scholar
60. Marten, G. R. 1988. Productivity, stability, sustainability, equitability and autonomy as properties for agroecosystem assessment. Agric. Syst. 26: 291316.CrossRefGoogle Scholar
61. Maxwell, B. D. 1992. Weed thresholds: the space component and considerations for herbicide resistance. Weed Technol. 6: 205212.CrossRefGoogle Scholar
62. Maxwell, B. D. and Ghersa, C. 1992. The influence of weed seed dispersion versus the effect of competition on crop yield. Weed Technol. 6: 196204.CrossRefGoogle Scholar
63. McLachlan, S. M., Tollenaar, M., Swanton, C. J., and Weise, S.F. 1993. Effect of corn-induced shading on dry matter accumulation, distribution and architecture of redroot pigweed (Amaranthus retroflexus). Weed Sci. 41: 568573.CrossRefGoogle Scholar
64. McLachlan, S. M., Swanton, C. J., Weise, S. F., and Tollenaar, M. 1993. Effect of corn-induced shading and temperature on rate of leaf appearance in redroot pigweed (Amaranthus retroflexus). Weed Sci. 41: 590593.CrossRefGoogle Scholar
65. McLachlan, S. M., Murphy, S. D., Tollenaar, M., Weise, S. F., and Swanton, C. J. 1995. Light limitation of reproduction and variation in the allometric relationship between reproductive and vegetative biomass in Amaranthus retroflexus (redroot pigweed). J. Appl. Ecol. 32: 157165.CrossRefGoogle Scholar
66. McMurray, S. 1993. No-till farms supplant furrowed fields, cutting erosion but spreading herbicides. Wall Street Journal (July 8):B1, B6.Google Scholar
67. McRae, T. and Lombardi, N. 1994. Report of consultation workshop on environmental indicators for Canadian agriculture. Environmental Policy Branch, Agriculture and Agriforestry, Canada, Ottawa, Canada, pp. 3247.Google Scholar
68. Mohler, C. L. 1993. A model of the effects of tillage on emergence of weed seedlings. Ecol. Applic. 3: 5373.CrossRefGoogle Scholar
69. Moore, M. J., Gillespie, T. J., and Swanton, C. J. 1994. Effect of cover crop effect on weed emergence, weed biomass and soybean (Glycine max) development. Weed Technol. 7: 643646.Google Scholar
70. Neher, D. 1992. Ecological sustainability in agricultural systems: Definition and measurement. J. Sustain. Agric. 2: 5161.CrossRefGoogle Scholar
71. Oberle, S. 1994. Farming systems options for U.S. agriculture: an agroecological perspective. J. Prod. Agric. 7: 119123.CrossRefGoogle Scholar
72. Pimentel, D., Stachow, U., Takacs, D. A., Brubaker, H. W., Dumas, A. R., Meaney, J. J., O'Neil, J.A.S., Onsi, D. E., and Corzelius, D. B. 1992. Conserving biological diversity in agriculture/forestry systems. BioScience 42: 354362.CrossRefGoogle Scholar
73. Reidy, M. E. and Swanton, C. J. 1994. Postemergence control of quackgrass (Elytrigia repens (L.) Nevski) with DPX-79406 in corn (Zea mays L.). Can. J. Plant Sci. 74: 375381.CrossRefGoogle Scholar
74. Reidy, M. E. and Swanton, C. J. 1994. Response of four quackgrass (Elytrigia repens (L.) Nevski) biotypes to desiccation. Can. J. Plant Sci. 74: 485495.CrossRefGoogle Scholar
75. Sandoval-Avila, D. M., Michaels, T. E., Murphy, S. D., and Swanton, C. J. 1994. Effect of tillage practice and planting pattern on performance of white bean (Phaseolus vulgaris L.) in Ontario. Can. J. Plant Sci. 74: 801805.CrossRefGoogle Scholar
76. Schaller, N. 1993. The concept of agricultural sustainability. Agric. Ecosys. Environ. 46: 8997.CrossRefGoogle Scholar
77. Suter, G. W. II. 1993. A critique of ecosystem health concepts and indices. Environ. Toxicol. Chem. 12: 15331539.CrossRefGoogle Scholar
78. Swanton, C. J. and Weise, S. F. 1991. Integrated weed management: the rationale and approach. Weed Technol. 5: 657663.CrossRefGoogle Scholar
79. Swanton, C. J., Clements, D. R., and Derksen, D. A. 1993. Weed succession under conservation tillage: A hierarchical framework for research and management. Weed Technol. 7: 286297.CrossRefGoogle Scholar
80. Swift, M. J. and Anderson, A. 1993. Biodiversity and ecosystem function in agricultural systems. Pages 1541 in Schulze, E. D., and Mooney, H. A. (eds.). Biodiversity and ecosystem function. Springer-Verlag, Berlin, Germany.Google Scholar
81. Swinton, S. M. and King, R. P. 1994. A bioeconomic model for weed management in corn and soybean. Agric. Sys. 44: 313335.CrossRefGoogle Scholar
82. Thomas, A. G. and Frick, B. L. 1993. Influence of tillage systems on weed abundance in southwestern Ontario. Weed Technol. 7: 699705.CrossRefGoogle Scholar
83. Tollenaar, M., Dibo, A. A., Aguilera, A., Weise, S. F., and Swanton, C. J. 1994. Effect of crop density on weed interference in maize. Agron. J. 86: 591595.CrossRefGoogle Scholar
84. Tollenaar, M., Nissanka, S. P., Aguilera, A., Weise, S. F., and Swanton, C. J. 1994. Effect of weed interference and soil nitrogen on four maize hybrids. Agron. J. 86: 596601.CrossRefGoogle Scholar
85. Van Acker, R. C., Swanton, C. J., and Weise, S. F. 1993. The critical period of weed control in soybean (Glycine max (L.) Merr.). Weed Sci. 41: 194200.CrossRefGoogle Scholar
86. Van Acker, R. C., Weise, S. F., and Swanton, C. J. 1993. Influence of interference from a mixed weed species stand on soybean (Glycine max (L.) Merr.) growth. Can. J. Plant Sci. 73: 12931304.CrossRefGoogle Scholar
87. Wagner-Riddle, C., Gillespie, T. J., and Swanton, C. J. 1994. Rye cover crop management impact on soil water content, soil temperature and soybean growth. Can. J. Plant Sci. 74: 485495.CrossRefGoogle Scholar
88. Waltner-Toews, D. 1994. Ecosystem health: A framework for implementing sustainability in agriculture. Pages 823 in Nielsen, O. (ed.). Agroecosystem health: Proceedings of an international workshop. Univ. Guelph, Guelph, Canada. pp. 8–23.Google Scholar
89. Weaver, S. E., Kropff, M. J., and Groenveld, R.M.W. 1992. On the use of models in crop-weed interaction studies. Weed Sci. 40: 302307.CrossRefGoogle Scholar
90. Weersink, A., Walker, M., Swanton, C., and Shaw, J. 1992. Economic comparison of alternative tillage systems under risk. Can. J. Agric. Econ. 40: 199217.CrossRefGoogle Scholar
91. Weersink, A., Walker, M., Swanton, C., and Shaw, J. E. 1992. Costs of conventional and conservation tillage systems. J. Soil Water Cons. 47: 328334.Google Scholar
92. Wiles, L. J., Gold, H. J., and Wilkerson, G. G. 1993. Modelling the uncertainty of weed density estimates to improve postemergence herbicide control decisions. Weed Res. 33: 241252.CrossRefGoogle Scholar
93. Wood, R. C. and Dumanski, J. (eds.). Proceedings of the international workshop on sustainable land management for the 21st century. Volume 2: plenary papers. International workshop on sustainable land management. Agricultural Institute of Canada, Ottawa, Canada. 381 pp.Google Scholar
94. Woolley, B. L., Michaels, T. E., Hall, M. R., and Swanton, C. J. 1993. The critical period of weed control in white bean, Phaseolus vulgaris . Weed Sci. 41: 180184.CrossRefGoogle Scholar
95. Wyse, D. L. 1994. New technologies and approaches for weed management in sustainable agriculture systems. Weed Technol. 8: 403407.CrossRefGoogle Scholar
96. Yakubu, Y. 1992. Effect of planting pattern on crop/weed competition in corn (Zea mays L.). , Univ. of Guelph, Guelph, ON. 51 pp.Google Scholar
97. Yiridoe, E. K., Weersink, A., Roy, R. C., and Swanton, C. J. 1993. Economic-analysis of alternative cropping systems for a bean/wheat rotation on light textured soils. Can. J. Plant Sci. 73: 405415.CrossRefGoogle Scholar
98. Yiridoe, E. K., Weersink, A., Swanton, C. J., and Roy, R. C. 1994. Risk efficient choice of bean-winter wheat rotation, cover crop and tillage system on light textured soils. J. Prod. Agric. 7: 374380.CrossRefGoogle Scholar
99. Zoschke, A. 1994. Toward reduced herbicide rates and adapted management. Weed Technol. 8: 376387.CrossRefGoogle Scholar