We partner with a secure submission system to handle manuscript submissions.
Please note:
You will need an account for the submission system, which is separate to your Cambridge Core account. For login and submission support, please visit the
submission and support pages.
Please review this journal's author instructions, particularly the
preparing your materials
page, before submitting your manuscript.
Click Proceed to submission system to continue to our partner's website.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We continue the investigation of the algebraic and topological structure of the algebra of Colombeau generalized functions with the aim of building up the algebraic basis for the theory of these functions. This was started in a previous work of Aragona and Juriaans, where the algebraic and topological structure of the Colombeau generalized numbers were studied. Here, among other important things, we determine completely the minimal primes of and introduce several invariants of the ideals of (Ω). The main tools we use are the algebraic results obtained by Aragona and Juriaans and the theory of differential calculus on generalized manifolds developed by Aragona and co-workers. The main achievement of the differential calculus is that all classical objects, such as distributions, become C∞-functions. Our purpose is to build an independent and intrinsic theory for Colombeau generalized functions and place them in a wider context.
for 0 ≤ x < ∞, fixed p ∈ (1, ∞), and with y′(0)/y(0) specified, is studied under conditions on q related to those of Brinck and Molanov. Topics include Sturmian results, connections between problems on finite intervals and the half-line, and variational principles.
Let be the self-adjoint operator associated with the Dirichlet form
where ϕ is a positive C2 function, dλϕ = ϕdλ and λ denotes Lebesgue measure on ℝd. We study the boundedness on Lp(λϕ) of spectral multipliers of . We prove that if ϕ grows or decays at most exponentially at infinity and satisfies a suitable ‘curvature condition’, then functions which are bounded and holomorphic in the intersection of a parabolic region and a sector and satisfy Mihlin-type conditions at infinity are spectral multipliers of Lp(λϕ). The parabolic region depends on ϕ, on p and on the infimum of the essential spectrum of the operator on L2(λϕ). The sector depends on the angle of holomorphy of the semigroup generated by on Lp(λϕ).
We present a systematic method for proving non-terminating basic hypergeometric identities. Assume that k is the summation index. By setting a parameter x to xqn, we may find a recurrence relation of the summation by using the q-Zeilberger algorithm. This method applies to almost all non-terminating basic hypergeometric summation formulae in the work of Gasper and Rahman. Furthermore, by comparing the recursions and the limit values, we may verify many classical transformation formulae, including the Sears–Carlitz transformation, transformations of the very well-poised 8φ7 series, the Rogers–Fine identity and the limiting case of Watson's formula that implies the Rogers–Ramanujan identities.
A generalization of the odd Bernoulli polynomials related to the quantum Euler top is introduced and investigated. This is applied in order to compute the coefficients of the spectral polynomials for the classical Lamé operator.
We show that if G is an infinitely generated locally (polycyclic-by-finite) group with cohomology almost-everywhere finitary, then every finite subgroup of G acts freely and orthogonally on some sphere.
The Hecke algebra of a Hecke pair (G, H) is studied using the Schlichting completion (Ḡ, ), which is a Hecke pair whose Hecke algebra is isomorphic to and which is topologized so that is a compact open subgroup of Ḡ. In particular, the representation theory and C*-completions of are addressed in terms of the projection using both Fell's and Rieffel's imprimitivity theorems and the identity . An extended analysis of the case where H is contained in a normal subgroup of G (and in particular the case where G is a semi-direct product) is carried out, and several specific examples are analysed using this approach.
A result is presented giving conditions on a set of open discs in the complex plane that ensure that a transcendental meromorphic function with Nevanlinna deficient poles omits at most one finite value outside the set of discs. This improves a previous result of Langley, and goes some way towards closing a gap between Langley's result and a theorem of Toppila in which the omitted values considered may include ∞
In this paper the spectral properties of the abstract Klein–Gordon equation are studied. The main tool is an indefinite inner product known as the charge inner product. Under certain assumptions on the potential V, two operators are associated with the Klein–Gordon equation and studied in Krein spaces generated by the charge inner product. It is shown that the operators are self-adjoint and definitizable in these Krein spaces. As a consequence, they possess spectral functions with singularities, their essential spectra are real with a gap around 0 and their non-real spectra consist of finitely many eigenvalues of finite algebraic multiplicity which are symmetric to the real axis. One of these operators generates a strongly continuous group of unitary operators in the Krein space; the other one gives rise to two bounded semi-groups. Finally, the results are applied to the Klein–Gordon equation in ℝn.
We study the spectrum of periodic Jacobi matrices. We concentrate on the case of slowly oscillating diagonal terms and study the behaviour of the zeros of the associated orthogonal polynomials in the spectral gap. We find precise estimates for the distance from single eigenvalues of truncated matrices in the spectral gap to the diagonal entries of the matrix. We include a brief numerical example to show the exactness of our estimates.
We investigate in this paper the topological stability of pairs (ω, X), where ω is a germ of an integrable 1-form and X is a germ of a vector field tangent to the foliation determined by ω.
If G is a finite solvable group and p is a prime, then the normalizer of a Sylow p-subgroup has a normal Sylow 2-subgroup if and only if all non-trivial irreducible real 2-Brauer characters of G have degree divisible by p.
In this paper, we deal with the non-negative solutions of a degenerate parabolic system with nonlinear coupled boundary conditions and non-negative non-trivial compactly supported initial data. The critical Fujita exponents are given and the blow-up rates of the non-global solution are obtained.