Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-21T11:46:50.078Z Has data issue: false hasContentIssue false

4 - Neurobiology of Wisdom

from Part I - Foundations of Wisdom

Published online by Cambridge University Press:  15 March 2019

Robert J. Sternberg
Affiliation:
Cornell University, New York
Judith Glück
Affiliation:
Universität Klagenfurt, Austria
Get access

Summary

This chapter describes the neurobiology of wisdom, based on its empirical definition. It briefly reviews the empirical literature of defining and assessing wisdom. The chapter then describes the history of mapping brain function to specific neuroanatomy from Gall to Brodmann. Then it discusses specific experiments of nature that illustrate how brain lesions can lead to a loss of wisdom and reviews the scientific evidence that links specific wisdom components (prosocial attitudes and behaviors, social decision-making/pragmatic knowledge of life, emotional homeostasis or regulation, reflection/self-understanding, value relativism/tolerance, acknowledgement of and dealing effectively with uncertainty and ambiguity, spirituality) with neuroanatomical structures and neurotransmitters. The chapter concludes by proposing a putative wisdom neurocircuit and discusses how structural and functional brain changes with aging may correlate to increased wisdom with aging. Ultimately, the chapter argues that wisdom has distinct neurobiological roots and better understanding of the neurocircuitry can guide future wisdom interventions.
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adolphs, R., Tranel, D., Damasio, H., & Damasio, A. (1994). Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature, 372(6507), 669–72. doi: 10.1038/372669a0CrossRefGoogle Scholar
Amodio, D. M., Harmon-Jones, E., Devine, P. G., Curtin, J. J., Hartley, S. L., & Covert, A. E. (2004). Neural signals for the detection of unintentional race bias. Psychological Science, 15(2), 8893. doi: 10.1111/j.0963-7214.2004.01502003.xCrossRefGoogle ScholarPubMed
Ardelt, M. (2003). Empirical assessment of a three-dimensional wisdom scale. Research on Aging, 25(3), 275324. doi: 10.1177/0164027503025003004CrossRefGoogle Scholar
Bachner-Melman, R., Gritsenko, I., Nemanov, L., Zohar, A. H., Dina, C., & Ebstein, R. P. (2005). Dopaminergic polymorphisms associated with self-report measures of human altruism: A fresh phenotype for the dopamine D4 receptor. Molecular Psychiatry, 10(4), 333–5. doi: 10.1038/sj.mp.4001635CrossRefGoogle ScholarPubMed
Baltes, P. B., & Staudinger, U. M. (2000). Wisdom: A metaheuristic (pragmatic) to orchestrate mind and virtue toward excellence. American Psychologist, 55(1), 122–36. doi: 10.1037/0003-066x.55.1.122CrossRefGoogle Scholar
Baltes, P. B., Staudinger, U. M., Maercker, A., & Smith, J. (1995). People nominated as wise: A comparative study of wisdom-related knowledge. Psychology and Aging, 10(2), 155–66. doi: 10.1037/0882-7974.10.2.155CrossRefGoogle Scholar
Bangen, K. J., Kaup, A. R., Mirzakhanian, H., Wierenga, C. E., Jeste, D. V., & Eyler, L. T. (2012). Compensatory brain activity during encoding among older adults with better recognition memory for face-name pairs: An integrative functional, structural, and perfusion imaging study. Journal of the International Neuropsychological Society, 18(03), 402–13. doi: 10.1017/s1355617712000197Google ScholarPubMed
Bangen, K. J., Meeks, T. W., & Jeste, D. V. (2013). Defining and assessing wisdom: A review of the literature. The American Journal of Geriatric Psychiatry, 21(12), 1254–66. doi: 10.1016/j.jagp.2012.11.020CrossRefGoogle Scholar
Beadle, J. N., Sheehan, A. H., Dahlben, B., & Gutchess, A. H. (2015). Aging, empathy, and prosociality. The Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 70(2), 215–24. doi: 10.1093/geronb/gbt091CrossRefGoogle ScholarPubMed
Bear, D. M. (1979). Temporal lobe epilepsy – a syndrome of sensory-limbic hyperconnection. Cortex, 15(3), 357–84.CrossRefGoogle ScholarPubMed
Bear, D. M., & Fedio, P. (1977). Quantitative analysis of interictal behavior in temporal lobe epilepsy. Archives of Neurology, 34(8), 454–67.CrossRefGoogle ScholarPubMed
Beauregard, M., & Paquette, V. (2006). Neural correlates of a mystical experience in Carmelite nuns. Neuroscience Letters, 405(3), 186–90. doi: 10.1016/j.neulet.2006.06.060CrossRefGoogle ScholarPubMed
Beauregard, M., & Paquette, V. (2008). EEG activity in Carmelite nuns during a mystical experience. Neuroscience Letters, 444(1), 14. doi: 10.1016/j.neulet.2008.08.028CrossRefGoogle ScholarPubMed
Berlin, H. A. (2004). Impulsivity, time perception, emotion and reinforcement sensitivity in patients with orbitofrontal cortex lesions. Brain, 127(5), 1108–26. doi: 10.1093/brain/awh135CrossRefGoogle ScholarPubMed
Birditt, K. S., Fingerman, K. L., & Almeida, D. M. (2005). Age differences in exposure and reactions to interpersonal tensions: A daily diary study. Psychology and Aging, 20(2), 330–40. doi: 10.1037/0882-7974.20.2.330Google ScholarPubMed
Birditt, K. S., Jackey, L. M., & Antonucci, T. C. (2009). Longitudinal patterns of negative relationship quality across adulthood. The Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 64(1), 5564. doi: 10.1093/geronb/gbn031CrossRefGoogle ScholarPubMed
Blazer, D. (2012). Religion/spirituality and depression: What can we learn from empirical studies? The American Journal of Psychiatry, 169(1), 1012. doi: 10.1176/appi.ajp.2011.11091407 10.1176/appi.ajp.2012.169.8.a10CrossRefGoogle ScholarPubMed
Blazer, D. G. (2009). Religion, spirituality, and mental health: What we know and why this is a tough topic to research. The Canadian Journal of Psychiatry, 54(5), 281–2. doi: 10.1177/070674370905400501CrossRefGoogle ScholarPubMed
Boccia, M., Piccardi, L., & Guariglia, P. (2015). The meditative mind: A comprehensive meta-analysis of MRI studies. BioMed Research International, 2015, 419808. doi: 10.1155/2015/419808CrossRefGoogle ScholarPubMed
Borg, J., Andree, B., Soderstrom, H., & Farde, L. (2003). The serotonin system and spiritual experiences. The American Journal of Psychiatry, 160(11), 1965–9. doi: 10.1176/appi.ajp.160.11.1965CrossRefGoogle ScholarPubMed
Brassen, S., Gamer, M., Peters, J., Gluth, S., & Buchel, C. (2012). Don't look back in anger! responsiveness to missed chances in successful and nonsuccessful aging. Science, 336(6081), 612–14. doi: 10.1126/science.1217516CrossRefGoogle Scholar
Brefczynski-Lewis, J. A., Lutz, A., Schaefer, H. S., Levinson, D. B., & Davidson, R. J. (2007). Neural correlates of attentional expertise in long-term meditation practitioners. Proceedings of the National Academy of Sciences, 104(27), 114838. doi: 10.1073/pnas.0606552104CrossRefGoogle ScholarPubMed
Brown, S. C., & Greene, J. A. (2006). The Wisdom Development Scale: Translating the conceptual to the concrete. Journal of College Student Development, 47(1), 119. doi: 10.1353/csd.2006.0002CrossRefGoogle Scholar
Brunet, E., Sarfati, Y., Hardy-Baylé, M.-C., & Decety, J. (2000). A PET Investigation of the Attribution of Intentions with a Nonverbal Task. Neuroimage, 11(2), 157–66. doi: 10.1006/nimg.1999.0525CrossRefGoogle ScholarPubMed
Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: The HAROLD model. Psychology and Aging, 17(1), 85100. doi: 10.1037//0882-7974.17.1.85CrossRefGoogle ScholarPubMed
Canli, T., Congdon, E., Gutknecht, L., Constable, R. T., & Lesch, K. P. (2005). Amygdala responsiveness is modulated by tryptophan hydroxylase-2 gene variation. Journal of Neural Transmission, 112(11), 1479–85. doi: 10.1007/s00702-005-0391-4CrossRefGoogle ScholarPubMed
Canli, T., Omura, K., Haas, B. W., Fallgatter, A., Constable, R. T., & Lesch, K. P. (2005). Beyond affect: A role for genetic variation of the serotonin transporter in neural activation during a cognitive attention task. Proceedings of the National Academy of Sciences, 102(34), 122249. doi: 10.1073/pnas.0503880102CrossRefGoogle ScholarPubMed
Canli, T., Qiu, M., Omura, K., Congdon, E., Haas, B. W., Amin, Z., et al. (2006). Neural correlates of epigenesis. Proceedings of the National Academy of Sciences, 103(43), 160338. doi: 10.1073/pnas.0601674103CrossRefGoogle ScholarPubMed
Carstensen, L., Mikels, J., & Mather, M. (2006). Aging and the intersection of cognition, motivation, and emotion. In Handbook of the Psychology of Aging (pp. 343–62). Amsterdam, Netherlands: Elsevier.Google Scholar
Carstensen, L. L., Turan, B., Scheibe, S., Ram, N., Ersner-Hershfield, H., Samanez-Larkin, , et al. (2011). Emotional experience improves with age: Evidence based on over 10 years of experience sampling. Psychology and Aging, 26(1), 2133. doi: 10.1037/a0021285CrossRefGoogle ScholarPubMed
Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., et al. (2005). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Focus, 3(1), 156–60. doi: 10.1176/foc.3.1.156Google Scholar
Cato, M. A., Delis, D. C., Abildskov, T. J., & Bigler, E. (2004). Assessing the elusive cognitive deficits associated with ventromedial prefrontal damage: A case of a modern-day Phineas Gage. Journal of the International Neuropsychological Society, 10(3), 453–65. doi: 10.1017/S1355617704103123CrossRefGoogle Scholar
Chan, D., Anderson, V., Pijnenburg, Y., Whitwell, J., Barnes, J., Scahill, R., et al. (2009). The clinical profile of right temporal lobe atrophy. Brain, 132(5), 1287–98. doi: 10.1093/brain/awp037CrossRefGoogle ScholarPubMed
Chetelat, G., Mezenge, F., Tomadesso, C., Landeau, B., Arenaza-Urquijo, E., Rauchs, G., et al. (2017). Reduced age-associated brain changes in expert meditators: A multimodal neuroimaging pilot study. Scientific Reports, 7(1), 10160. doi: 10.1038/s41598-017-07764-xCrossRefGoogle ScholarPubMed
Clayton, V. P., & Birren, J. E. (1980). The development of wisdom across the life-span: A reexamination of an ancient topic. In Baltes, P. B. & Brim, O. G. (Eds.), Life-Span Development and Behavior (Vol. 3, pp. 103–35). New York, NY: Academic Press.Google Scholar
Congdon, E., & Canli, T. (2005). The Endophenotype of Impulsivity: Reaching Consilience Through Behavioral, Genetic, and Neuroimaging Approaches. Behavioral and Cognitive Neuroscience Reviews, 4(4), 262–81. doi: 10.1177/1534582305285980CrossRefGoogle ScholarPubMed
Cooney, R. E., Joormann, J., Atlas, L. Y., Eugène, F., & Gotlib, I. H. (2007). Remembering the good times: Neural correlates of affect regulation. Neuroreport, 18(17), 1771–4. doi: 10.1097/wnr.0b013e3282f16db4CrossRefGoogle ScholarPubMed
Cornish, K. M., Manly, T., Savage, R., Swanson, J., Morisano, D., Butler, N., et al. (2005). Association of the dopamine transporter (DAT1) 10/10-repeat genotype with ADHD symptoms and response inhibition in a general population sample. Molecular Psychiatry, 10(7), 686–98. doi: 10.1038/sj.mp.4001641CrossRefGoogle Scholar
Cotier, F. A., Zhang, R., & Lee, T. M. (2017). A longitudinal study of the effect of short-term meditation training on functional network organization of the aging brain. Scientific Reports, 7(1), 598. doi: 10.1038/s41598-017-00678-8CrossRefGoogle ScholarPubMed
Crescentini, C., Aglioti, S. M., Fabbro, F., & Urgesi, C. (2014). Virtual lesions of the inferior parietal cortex induce fast changes of implicit religiousness/spirituality. Cortex, 54, 115. doi: 10.1016/j.cortex.2014.01.023CrossRefGoogle ScholarPubMed
Crescentini, C., Di Bucchianico, M., Fabbro, F., & Urgesi, C. (2015). Excitatory stimulation of the right inferior parietal cortex lessens implicit religiousness/spirituality. Neuropsychologia, 70, 71–9. doi: 10.1016/j.neuropsychologia.2015.02.016CrossRefGoogle ScholarPubMed
Cunningham, W. A., Johnson, M. K., Raye, C. L., Gatenby, J. C., Gore, J. C., & Banaji, M. R. (2004). Separable neural components in the processing of black and white faces. Psychological Science, 15(12), 806–13. doi: 10.1111/j.0956-7976.2004.00760.xCrossRefGoogle ScholarPubMed
Daniels, L. R., Boehnlein, J., & McCallion, P. (2015). Aging, depression, and wisdom: A pilot study of life-review intervention and PTSD treatment with two groups of Vietnam veterans. Journal of Gerontological Social Work, 58(4), 420–36. doi: 10.1080/01634372.2015.1013657CrossRefGoogle Scholar
David, S. P. (2005). A functional genetic variation of the Serotonin (5-HT) transporter affects 5-HT1A receptor binding in humans. Journal of Neuroscience, 25(10), 2586–90. doi: 10.1523/jneurosci.3769-04.2005CrossRefGoogle ScholarPubMed
Davis, S. W., Dennis, N. A., Daselaar, S. M., Fleck, M. S., & Cabeza, R. (2008). Que PASA? The posterior-anterior shift in aging. Cerebral Cortex, 18(5), 1201–9. doi: 10.1093/cercor/bhm155CrossRefGoogle ScholarPubMed
de Quervain, D. J. F. (2004). The neural basis of altruistic punishment. Science, 305(5688), 1254–8. doi: 10.1126/science.1100735CrossRefGoogle ScholarPubMed
Decety, J., Jackson, P. L., Sommerville, J. A., Chaminade, T., & Meltzoff, A. N. (2004). The neural bases of cooperation and competition: An fMRI investigation. Neuroimage, 23(2), 744–51. doi: 10.1016/j.neuroimage.2004.05.025CrossRefGoogle ScholarPubMed
Dennis, N. A., & Cabeza, R. (2008). Neuroimaging of healthy cognitive aging. In Craik, F. & Salthouse, T. A. (Eds.), The Handbook of Aging and Cognition (3rd ed., pp. 154). New York, NY: Psychology Press.Google Scholar
Dennis, N. A., Hayes, S. M., Prince, S. E., Madden, D. J., Huettel, S. A., & Cabeza, R. (2008). Effects of aging on the neural correlates of successful item and source memory encoding. Journal of Experimental Psychology: Learning, Memory and Cognition, 34(4), 791808. doi: 10.1037/0278-7393.34.4.791Google ScholarPubMed
Dennis, N. A., Kim, H., & Cabeza, R. (2008). Age-related differences in brain activity during true and false memory retrieval. Journal of Cognitive Neuroscience, 20(8), 1390–402. doi: 10.1162/jocn.2008.20096CrossRefGoogle ScholarPubMed
Drabant, E. M., Hariri, A. R., Meyer-Lindenberg, A., Munoz, K. E., Mattay, V. S., Kolachana, B. S., et al. (2006). Catechol O-methyltransferase Val158Met genotype and neural mechanisms related to affective arousal and regulation. Archives of General Psychiatry, 63(12). doi: 10.1001/archpsyc.63.12.1396CrossRefGoogle ScholarPubMed
Dreher, J. C., Meyer-Lindenberg, A., Kohn, P., & Berman, K. F. (2008). Age-related changes in midbrain dopaminergic regulation of the human reward system. Proceedings of the National Academy of Sciences of the United States of America, 105(39), 1510611. doi: 10.1073/pnas.0802127105CrossRefGoogle ScholarPubMed
Eisenberg, J., Mei-Tal, G., Steinberg, A., Tartakovsky, E., Zohar, A., Gritsenko, I., et al. (1999). Haplotype relative risk study of catechol-O-methyltransferase (COMT) and attention deficit hyperactivity disorder (ADHD): Association of the high-enzyme activity val allele with adhd impulsive-hyperactive phenotype. American Journal of Medical Genetics, 88(5), 497502. doi: 10.1002/(sici)1096-8628(19991015)88:5<497::aid-ajmg12>3.0.co;2-f3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Erikson, E. H. (1966). Eight ages of man. International Journal of Psychiatry, 2(3), 281307.Google ScholarPubMed
Ernst, M., & Paulus, M. P. (2005). Neurobiology of decision making: A selective review from a neurocognitive and clinical perspective. Biological Psychiatry, 58(8), 597604. doi: 10.1016/j.biopsych.2005.06.004CrossRefGoogle ScholarPubMed
Eshel, N., Nelson, E. E., Blair, R. J., Pine, D. S., & Ernst, M. (2007). Neural substrates of choice selection in adults and adolescents: Development of the ventrolateral prefrontal and anterior cingulate cortices. Neuropsychologia, 45(6), 1270–9. doi: 10.1016/j.neuropsychologia.2006.10.004CrossRefGoogle ScholarPubMed
Eyler, L. T., Sherzai, A., Kaup, A. R., & Jeste, D. V. (2011). A review of functional brain imaging correlates of successful cognitive aging. Biological Psychiatry, 70(2), 115–22. doi: 10.1016/j.biopsych.2010.12.032CrossRefGoogle ScholarPubMed
Faraone, S. V., Doyle, A. E., Mick, E., & Biederman, J. (2001). Meta-analysis of the association between the 7-repeat allele of the dopamine D4Receptor gene and attention deficit hyperactivity disorder. American Journal of Psychiatry, 158(7), 1052–7. doi: 10.1176/appi.ajp.158.7.1052CrossRefGoogle Scholar
Farrow, T. F. D., Zheng, Y., Wilkinson, I. D., Spence, S. A., Deakin, J. F. W., Tarrier, N., et al. (2001). Investigating the functional anatomy of empathy and forgiveness. Neuroreport, 12(11), 2433–8. doi: 10.1097/00001756-200108080-00029CrossRefGoogle ScholarPubMed
Feder, A., Nestler, E. J., & Charney, D. S. (2009). Psychobiology and molecular genetics of resilience. Nature Reviews Neuroscience, 10(6), 446–57. doi: 10.1038/nrn2649CrossRefGoogle ScholarPubMed
Finger, S. (1994). Origins of Neuroscience: A History of Explorations into Brain Function. New York, NY: Oxford University Press, Inc.CrossRefGoogle Scholar
Fletcher, P. (1995). Other minds in the brain: A functional imaging study of “theory of mind” in story comprehension. Cognition, 57(2), 109–28. doi: 10.1016/0010-0277(95)00692-rCrossRefGoogle Scholar
Fossati, P., Hevenor, S. J., Graham, S. J., Grady, C., Keightley, M. L., Craik, F., et al. (2003). In search of the emotional self: An fMRI study using positive and negative emotional words. American Journal of Psychiatry, 160(11), 1938–45. doi: 10.1176/appi.ajp.160.11.1938CrossRefGoogle ScholarPubMed
Foster, E. A., Franks, D. W., Mazzi, S., Darden, S. K., Balcomb, K. C., Ford, J. K. B., et al. (2012). Adaptive prolonged postreproductive life span in killer whales. Science, 337(6100), 1313. doi: 10.1126/science.1224198CrossRefGoogle ScholarPubMed
Fox, K. C., Dixon, M. L., Nijeboer, S., Girn, M., Floman, J. L., Lifshitz, M., et al. (2016). Functional neuroanatomy of meditation: A review and meta-analysis of 78 functional neuroimaging investigations. Neuroscience & Biobehavioral Reviews, 65, 208–28. doi: 10.1016/j.neubiorev.2016.03.021CrossRefGoogle ScholarPubMed
Fox, K. C., Nijeboer, S., Dixon, M. L., Floman, J. L., Ellamil, M., Rumak, S. P., et al. (2014). Is meditation associated with altered brain structure? A systematic review and meta-analysis of morphometric neuroimaging in meditation practitioners. Neuroscience & Biobehavioral Reviews, 43, 4873. doi: 10.1016/j.neubiorev.2014.03.016CrossRefGoogle ScholarPubMed
Gage, F. H. (2002). Neurogenesis in the adult brain. The Journal of Neuroscience, 22(3), 612–13.Google ScholarPubMed
George, L. K., Kinghorn, W. A., Koenig, H. G., Gammon, P., & Blazer, D. G. (2013). Why gerontologists should care about empirical research on religion and health: Transdisciplinary perspectives. Gerontologist, 53(6), 898906. doi: 10.1093/geront/gnt002CrossRefGoogle ScholarPubMed
Gilboa, A. (2004). Autobiographical and episodic memory – one and the same? Neuropsychologia, 42(10), 1336–49. doi: 10.1016/j.neuropsychologia.2004.02.014CrossRefGoogle ScholarPubMed
Goldin, P. R., McRae, K., Ramel, W., & Gross, J. J. (2008). The neural bases of emotion regulation: Reappraisal and suppression of negative emotion. Biological Psychiatry, 63(6), 577–86. doi: 10.1016/j.biopsych.2007.05.031CrossRefGoogle ScholarPubMed
Green, M. F., Penn, D. L., Bentall, R., Carpenter, W. T., Gaebel, W., Gur, R. C., et al. (2008). Social cognition in Schizophrenia: An NIMH workshop on definitions, assessment, and research opportunities. Schizophrenia Bulletin, 34(6), 1211–20. doi: 10.1093/schbul/sbm145CrossRefGoogle ScholarPubMed
Greene, J. A., & Brown, S. C. (2009). The Wisdom Development Scale: Further validity investigations. The International Journal of Aging and Human Development, 68(4), 289320. doi: 10.2190/ag.68.4.bCrossRefGoogle ScholarPubMed
Greene, J. D. (2001). An fMRI investigation of emotional engagement in moral judgment. Science, 293(5537), 2105–8. doi: 10.1126/science.1062872CrossRefGoogle ScholarPubMed
Greene, J. D., Nystrom, L. E., Engell, A. D., Darley, J. M., & Cohen, J. D. (2004). The neural bases of cognitive conflict and control in moral judgment. Neuron, 44(2), 389400. doi: 10.1016/j.neuron.2004.09.027CrossRefGoogle ScholarPubMed
Grossmann, I., Na, J., Varnum, M. E. W., Park, D. C., Kitayama, S., & Nisbett, R. E. (2010). Reasoning about social conflicts improves into old age. Proceedings of the National Academy of Sciences, 107(16), 7246–50. doi: 10.1073/pnas.1001715107CrossRefGoogle ScholarPubMed
Gutknecht, L., Jacob, C., Strobel, A., Kriegebaum, C., Muller, J., Zeng, Y., et al. (2007). Tryptophan hydroxylase-2 gene variation influences personality traits and disorders related to emotional dysregulation. The International Journal of Neuropsychopharmacology, 10(3), 309–20. doi: 10.1017/S1461145706007437Google ScholarPubMed
Haas, L. F. (2001). Phineas Gage and the science of brain localisation. Journal of Neurology, Neurosurgery & Psychiatry, 71(6), 761. doi: 10.1136/jnnp.71.6.761CrossRefGoogle ScholarPubMed
Harbaugh, W. T., Mayr, U., & Burghart, D. R. (2007). Neural responses to taxation and voluntary giving reveal motives for charitable donations. Science, 316(5831), 1622–5. doi: 10.1126/science.1140738CrossRefGoogle ScholarPubMed
Hariri, A. R. (2002). Serotonin transporter genetic variation and the response of the human Amygdala. Science, 297(5580), 400–3. doi: 10.1126/science.1071829CrossRefGoogle ScholarPubMed
Hariri, A. R., Bookheimer, S. Y., & Mazziotta, J. C. (2000). Modulating emotional responses. Neuroreport, 11(1), 43–8. doi: 10.1097/00001756-200001170-00009CrossRefGoogle ScholarPubMed
Hariri, A. R., Drabant, E. M., Munoz, K. E., Kolachana, B. S., Mattay, V. S., Egan, M. F., et al. (2005). A susceptibility gene for affective disorders and the response of the human Amygdala. Archives of General Psychiatry, 62(2), 146. doi: 10.1001/archpsyc.62.2.146CrossRefGoogle ScholarPubMed
Hayward, R. D., Owen, A. D., Koenig, H. G., Steffens, D. C., & Payne, M. E. (2011). Associations of religious behavior and experiences with extent of regional atrophy in the orbitofrontal cortex during older adulthood. Religion, Brain & Behavior, 1(2), 103–18. doi: 10.1080/2153599x.2011.598328CrossRefGoogle ScholarPubMed
Heinz, A., Braus, D. F., Smolka, M. N., Wrase, J., Puls, I., Hermann, D., et al. (2004). Amygdala-prefrontal coupling depends on a genetic variation of the serotonin transporter. Nature Neuroscience, 8(1), 20–1. doi: 10.1038/nn1366Google ScholarPubMed
Helmuth, L. (2003). Aging. The wisdom of the wizened. Science, 299(5611), 1300–2. doi: 10.1126/science.299.5611.1300CrossRefGoogle ScholarPubMed
Herrmann, M. J., Huter, T., Muller, F., Muhlberger, A., Pauli, P., Reif, A., et al. (2006). Additive effects of serotonin transporter and tryptophan hydroxylase-2 gene variation on emotional processing. Cerebral Cortex, 17(5), 1160–3. doi: 10.1093/cercor/bhl026CrossRefGoogle ScholarPubMed
Horga, G., Schatz, K. C., Abi-Dargham, A., & Peterson, B. S. (2014). Deficits in predictive coding underlie hallucinations in Schizophrenia. Journal of Neuroscience, 34(24), 8072–82. doi: 10.1523/jneurosci.0200-14.2014CrossRefGoogle ScholarPubMed
Horn, N. R., Dolan, M., Elliott, R., Deakin, J. F. W., & Woodruff, P. W. R. (2003). Response inhibition and impulsivity: An fMRI study. Neuropsychologia, 41(14), 1959–66. doi: 10.1016/s0028-3932(03)00077-0CrossRefGoogle ScholarPubMed
Hur, Y. M., & Rushton, J. P. (2007). Genetic and environmental contributions to prosocial behaviour in 2- to 9-year-old South Korean twins. Biology Letters, 3(6), 664–6. doi: 10.1098/rsbl.2007.0365CrossRefGoogle ScholarPubMed
Jacob, S., Brune, C. W., Carter, C. S., Leventhal, B. L., Lord, C., & Cook, E. H. (2007). Association of the oxytocin receptor gene (OXTR) in Caucasian children and adolescents with autism. Neuroscience Letters, 417(1), 69. doi: 10.1016/j.neulet.2007.02.001CrossRefGoogle ScholarPubMed
Jeste, D. V., Ardelt, M., Blazer, D., Kraemer, H. C., Vaillant, G., & Meeks, T. W. (2010). Expert consensus on characteristics of wisdom: A Delphi method study. Gerontologist, 50(5), 668–80. doi: 10.1093/geront/gnq022CrossRefGoogle Scholar
Jeste, D. V., & Harris, J. C. (2010). Wisdom – a neuroscience perspective. JAMA, 304(14), 1602–3. doi: 10.1001/jama.2010.1458CrossRefGoogle Scholar
Jeste, D. V., & Vahia, I. V. (2008). Comparison of the conceptualization of wisdom in ancient Indian literature with modern views: Focus on the Bhagavad Gita. Psychiatry, 71(3), 197209. doi: 10.1521/psyc.2008.71.3.197CrossRefGoogle ScholarPubMed
Karlsson, H., Hirvonen, J., Salminen, J. K., & Hietala, J. (2011). No association between serotonin 5-HT 1A receptors and spirituality among patients with major depressive disorders or healthy volunteers. Molecular Psychiatry, 16(3), 282–5. doi: 10.1038/mp.2009.126CrossRefGoogle ScholarPubMed
Kaup, A. R., Mirzakhanian, H., Jeste, D. V., & Eyler, L. T. (2011). A review of the brain structure correlates of successful cognitive aging. Journal of Neuropsychiatry, 23(1), 615. doi: 10.1176/appi.neuropsych.23.1.6CrossRefGoogle ScholarPubMed
Kennedy, Q., Mather, M., & Carstensen, L. L. (2004). The role of motivation in the age-related positivity effect in autobiographical memory. Psychological Science, 15(3), 208–14. doi: 10.1111/j.0956-7976.2004.01503011.xCrossRefGoogle ScholarPubMed
Kim, J. H., Son, Y. D., Kim, J. H., Choi, E. J., Lee, S. Y., Joo, Y. H., et al. (2015). Self-transcendence trait and its relationship with in vivo serotonin transporter availability in brainstem raphe nuclei: An ultra-high resolution PET-MRI study. Brain Research, 1629, 6371. doi: 10.1016/j.brainres.2015.10.006CrossRefGoogle ScholarPubMed
Kim, S. H., & Hamann, S. (2007). Neural correlates of positive and negative emotion regulation. Journal of Cognitive Neuroscience, 19(5), 776–98. doi: 10.1162/jocn.2007.19.5.776Google ScholarPubMed
Knafo, A., Israel, S., Darvasi, A., Bachner-Melman, R., Uzefovsky, F., Cohen, L., et al. (2008). Individual differences in allocation of funds in the dictator game associated with length of the arginine vasopressin 1a receptor RS3 promoter region and correlation between RS3 length and hippocampal mRNA. Genes, Brain and Behavior, 7(3), 266–75. doi: 10.1111/j.1601-183x.2007.00341.xCrossRefGoogle ScholarPubMed
Koenig, H. G. (2015). Religion, spirituality, and health: A review and update. Advances in Mind-Body Medicine, 29(3), 1926.Google Scholar
Koenigs, M., Young, L., Adolphs, R., Tranel, D., Cushman, F., Hauser, M., & Damasio, A. (2007). Damage to the prefrontal cortex increases utilitarian moral judgements. Nature, 446(7138), 908–11. doi: 10.1038/nature05631CrossRefGoogle Scholar
Krain, A. L., Wilson, A. M., Arbuckle, R., Castellanos, F. X., & Milham, M. P. (2006). Distinct neural mechanisms of risk and ambiguity: A meta-analysis of decision-making. Neuroimage, 32(1), 477–84. doi: 10.1016/j.neuroimage.2006.02.047CrossRefGoogle ScholarPubMed
Kurth, F., Luders, E., Wu, B., & Black, D. S. (2014). Brain gray matter changes associated with mindfulness meditation in older adults: An exploratory pilot study using voxel-based morphometry. Neuro, 1(1), 23–6. doi: 10.17140/noj-1-106Google ScholarPubMed
Lahdenpera, M., Lummaa, V., Helle, S., Tremblay, M., & Russell, A. F. (2004). Fitness benefits of prolonged post-reproductive lifespan in women. Nature, 428(6979), 178–81. doi: 10.1038/nature02367CrossRefGoogle ScholarPubMed
Laneri, D., Schuster, V., Dietsche, B., Jansen, A., Ott, U., & Sommer, J. (2015). Effects of long-term mindfulness meditation on brain's white matter microstructure and its aging. Frontiers in Aging Neuroscience, 7, 254. doi: 10.3389/fnagi.2015.00254Google ScholarPubMed
Lawrence, E. J., Shaw, P., Giampietro, V. P., Surguladze, S., Brammer, M. J., & David, A. S. (2006). The role of ‘shared representations’ in social perception and empathy: An fMRI study. Neuroimage, 29(4), 1173–84. doi: 10.1016/j.neuroimage.2005.09.001CrossRefGoogle ScholarPubMed
Lieberman, M. D. (2007). Social cognitive neuroscience: A review of core processes. Annual Review of Psychology, 58, 259–89. doi: 10.1146/annurev.psych.58.110405.085654CrossRefGoogle ScholarPubMed
Lieberman, M. D., Eisenberger, N. I., Crockett, M. J., Tom, S. M., Pfeifer, J. H., & Way, B. M. (2007). Putting feelings into words: Affect labeling disrupts amygdala activity in response to affective stimuli. Psychological Science, 18(5), 421–8. doi: 10.1111/j.1467-9280.2007.01916.xCrossRefGoogle ScholarPubMed
Luders, E., Cherbuin, N., & Gaser, C. (2016). Estimating brain age using high-resolution pattern recognition: Younger brains in long-term meditation practitioners. Neuroimage, 134, 508–13. doi: 10.1016/j.neuroimage.2016.04.007CrossRefGoogle ScholarPubMed
Mather, M., Canli, T., English, T., Whitfield, S., Wais, P., Ochsner, K., et al. (2004). Amygdala responses to emotionally valenced stimuli in older and younger adults. Psychological Science, 15(4), 259–63. doi: 10.1111/j.0956-7976.2004.00662.xCrossRefGoogle ScholarPubMed
Mather, M., & Carstensen, L. L. (2005). Aging and motivated cognition: The positivity effect in attention and memory. Trends in Cognitive Sciences, 9(10), 496502. doi: 10.1016/j.tics.2005.08.005CrossRefGoogle ScholarPubMed
McClure, S. M. (2004). Separate neural systems value immediate and delayed monetary rewards. Science, 306(5695), 503–7. doi: 10.1126/science.1100907CrossRefGoogle ScholarPubMed
Meaney, M. J., & Szyf, M. (2005). Environmental programming of stress responses through DNA methylation: Life at the interface between a dynamic environment and a fixed genome. Dialogues in Clinical Neuroscience, 7(2), 103–23.CrossRefGoogle Scholar
Meeks, T. W., & Jeste, D. V. (2009). Neurobiology of wisdom: A literature overview. Archives of General Psychiatry, 66(4), 355–65. doi: 10.1001/archgenpsychiatry.2009.8CrossRefGoogle Scholar
Meyer-Lindenberg, A., Buckholtz, J. W., Kolachana, B., Hariri, A. R., Pezawas, L., Blasi, G., et al. (2006). Neural mechanisms of genetic risk for impulsivity and violence in humans. Focus, 4(3), 360–8. doi: 10.1176/foc.4.3.360Google Scholar
Mickler, C., & Staudinger, U. M. (2008). Personal wisdom: Validation and age-related differences of a performance measure. Psychology and Aging, 23(4), 787–99. doi: 10.1037/a0013928CrossRefGoogle ScholarPubMed
Miller, L., Bansal, R., Wickramaratne, P., Hao, X., Tenke, C. E., Weissman, M. M., & Peterson, B. S. (2014). Neuroanatomical correlates of religiosity and spirituality: A study in adults at high and low familial risk for depression. JAMA Psychiatry, 71(2), 128–35. doi: 10.1001/jamapsychiatry.2013.3067CrossRefGoogle ScholarPubMed
Moraitou, D., & Efklides, A. (2011). The wise thinking and acting questionnaire: The cognitive facet of wisdom and its relation with memory, affect, and hope. Journal of Happiness Studies, 13(5), 849–73. doi: 10.1007/s10902-011-9295-1Google Scholar
Newberg, A., Alavi, A., Baime, M., Pourdehnad, M., Santanna, J., & d'Aquili, E. (2001). The measurement of regional cerebral blood flow during the complex cognitive task of meditation: A preliminary SPECT study. Psychiatry Research: Neuroimaging, 106(2), 113–22. doi: 10.1016/s0925-4927(01)00074-9Google ScholarPubMed
Newberg, A., Pourdehnad, M., Alavi, A., & d'Aquili, E. G. (2003). Cerebral blood flow during meditative prayer: Preliminary findings and methodological issues. Perceptual and Motor Skills, 97(2), 625–30. doi: 10.2466/pms.2003.97.2.625CrossRefGoogle ScholarPubMed
Newberg, A. B. (2014). The neuroscientific study of spiritual practices. Frontiers in Psychology, 5, 215. doi: 10.3389/fpsyg.2014.00215CrossRefGoogle ScholarPubMed
Nomura, M., & Nomura, Y. (2006). Psychological, neuroimaging, and biochemical studies on functional association between impulsive behavior and the 5-HT2A receptor gene polymorphism in humans. Annals of the New York Academy of Sciences, 1086(1), 134–43. doi: 10.1196/annals.1377.004CrossRefGoogle ScholarPubMed
Ochsner, K. N., Bunge, S. A., Gross, J. J., & Gabrieli, J. D. E. (2002). Rethinking feelings: An fMRI study of the cognitive regulation of emotion. Journal of Cognitive Neuroscience, 14(8), 1215–29. doi: 10.1162/089892902760807212CrossRefGoogle ScholarPubMed
Owen, A. D., Hayward, R. D., Koenig, H. G., Steffens, D. C., & Payne, M. E. (2011). Religious factors and hippocampal atrophy in late life. PLoS One, 6(3), e17006. doi: 10.1371/journal.pone.0017006CrossRefGoogle ScholarPubMed
Passamonti, L., Fera, F., Magariello, A., Cerasa, A., Gioia, M. C., Muglia, M., et al. (2006). Monoamine oxidase-A genetic variations influence brain activity associated with inhibitory control: New insight into the neural correlates of impulsivity. Biological Psychiatry, 59(4), 334–40. doi: 10.1016/j.biopsych.2005.07.027CrossRefGoogle ScholarPubMed
Pasupathi, M., Staudinger, U. M., & Baltes, P. B. (2001). Seeds of wisdom: Adolescents’ knowledge and judgment about difficult life problems. Developmental Psychology, 37(3), 351–61. doi: 10.1037//0012-1649.37.3.351CrossRefGoogle ScholarPubMed
Pedersen, N. L., Plomin, R., McClearn, G. E., & Friberg, L. (1988). Neuroticism, extraversion, and related traits in adult twins reared apart and reared together. Journal of Personality and Social Psychology, 55(6), 950–7. doi: 10.1037/0022-3514.55.6.950CrossRefGoogle ScholarPubMed
Perry, C. L., Komro, K. A., Jones, R. M., Munson, K., Williams, C. L., & Jason, L. (2002). The measurement of wisdom and its relationship to adolescent substance use and problem behaviors. Journal of Child & Adolescent Substance Abuse, 12(1), 4563. doi: 10.1300/j029v12n01_03CrossRefGoogle Scholar
Pezawas, L., Meyer-Lindenberg, A., Drabant, E. M., Verchinski, B. A., Munoz, K. E., Kolachana, B. S., et al. (2005). 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: A genetic susceptibility mechanism for depression. Nature Neuroscience, 8(6), 828–34. doi: 10.1038/nn1463CrossRefGoogle ScholarPubMed
Phan, K. L., Fitzgerald, D. A., Nathan, P. J., Moore, G. J., Uhde, T. W., & Tancer, M. E. (2005). Neural substrates for voluntary suppression of negative affect: A functional magnetic resonance imaging study. Biological Psychiatry, 57(3), 210–19. doi: 10.1016/j.biopsych.2004.10.030CrossRefGoogle ScholarPubMed
Reeves, S. J., Mehta, M. A., Montgomery, A. J., Amiras, D., Egerton, A., Howard, R. J., et al. (2007). Striatal dopamine (D2) receptor availability predicts socially desirable responding. Neuroimage, 34(4), 1782–9. doi: 10.1016/j.neuroimage.2006.10.042CrossRefGoogle ScholarPubMed
Richardson, D. S., Burke, T., & Komdeur, J. (2007). Grandparent helpers: The adaptive significance of older, postdominant helpers in the Seychelles Warbler. Evolution, 61(12), 2790–800. doi: 10.1111/j.1558-5646.2007.00222.xCrossRefGoogle ScholarPubMed
Rilling, J. K., Glenn, A. L., Jairam, M. R., Pagnoni, G., Goldsmith, D. R., Elfenbein, H. A., et al. (2007). Neural correlates of social cooperation and non-cooperation as a function of psychopathy. Biological Psychiatry, 61(11), 1260–71. doi: 10.1016/j.biopsych.2006.07.021CrossRefGoogle ScholarPubMed
Rilling, J. K., Gutman, D. A., Zeh, T. R., Pagnoni, G., Berns, G. S., & Kilts, C. D. (2002). A neural basis for social cooperation. Neuron, 35(2), 395405. doi: 10.1016/s0896-6273(02)00755-9CrossRefGoogle ScholarPubMed
Robertson, D., Snarey, J., Ousley, O., Harenski, K., Bowman, F. D., Gilkey, R., et al. (2007). The neural processing of moral sensitivity to issues of justice and care. Neuropsychologia, 45(4), 755–66. doi: 10.1016/j.neuropsychologia.2006.08.014Google ScholarPubMed
Rushton, J. P. (2004). Genetic and environmental contributions to pro-social attitudes: A twin study of social responsibility. Proceedings of the Royal Society B: Biological Sciences, 271(1557), 2583–5. doi: 10.1098/rspb.2004.2941CrossRefGoogle ScholarPubMed
Rushton, J. P., Fulker, D. W., Neale, M. C., Nias, D. K. B., & Eysenck, H. J. (1986). Altruism and aggression: The heritability of individual differences. Journal of Personality and Social Psychology, 50(6), 1192–8. doi: 10.1037/0022-3514.50.6.1192CrossRefGoogle ScholarPubMed
Russo, S. J., Murrough, J. W., Han, M. H., Charney, D. S., & Nestler, E. J. (2012). Neurobiology of resilience. Nature Neuroscience, 15(11), 1475–84. doi: 10.1038/nn.3234CrossRefGoogle ScholarPubMed
Samson, D., Apperly, I. A., & Humphreys, G. W. (2007). Error analyses reveal contrasting deficits in “theory of mind”: Neuropsychological evidence from a 3-option false belief task. Neuropsychologia, 45(11), 2561–9. doi: 10.1016/j.neuropsychologia.2007.03.013CrossRefGoogle ScholarPubMed
Samson, D., Apperly, I. A., Kathirgamanathan, U., & Humphreys, G. W. (2005). Seeing it my way: A case of a selective deficit in inhibiting self-perspective. Brain, 128(5), 1102–11. doi: 10.1093/brain/awh464CrossRefGoogle Scholar
Schutte, N. S., & Malouff, J. M. (2014). A meta-analytic review of the effects of mindfulness meditation on telomerase activity. Psychoneuroendocrinology, 42, 45–8. doi: 10.1016/j.psyneuen.2013.12.017CrossRefGoogle ScholarPubMed
Schwarz, F., Springer, S. A., Altheide, T. K., Varki, N. M., Gagneux, P., & Varki, A. (2016). Human-specific derived alleles of CD33 and other genes protect against postreproductive cognitive decline. Proceedings of the National Academy of Sciences of the United States of America, 113(1), 74–9. doi: 10.1073/pnas.1517951112Google ScholarPubMed
Seitz, R. J., Nickel, J., & Azari, N. P. (2006). Functional modularity of the medial prefrontal cortex: Involvement in human empathy. Neuropsychology, 20(6), 743–51. doi: 10.1037/0894-4105.20.6.743CrossRefGoogle ScholarPubMed
Seitz, R. J., Schäfer, R., Scherfeld, D., Friederichs, S., Popp, K., Wittsack, H. J., et al. (2008). Valuating other people's emotional face expression: A combined functional magnetic resonance imaging and electroencephalography study. Neuroscience, 152(3), 713–22. doi: 10.1016/j.neuroscience.2007.10.066CrossRefGoogle ScholarPubMed
Seroczynski, A. D., Bergeman, C. S., & Coccaro, E. F. (1999). Etiology of the impulsivity/aggression relationship: Genes or environment? Psychiatry Research, 86(1), 4157. doi: 10.1016/s0165-1781(99)00013-xCrossRefGoogle ScholarPubMed
Singer, T., Kiebel, S. J., Winston, J. S., Dolan, R. J., & Frith, C. D. (2004). Brain responses to the acquired moral status of faces. Neuron, 41(4), 653–62. doi: 10.1016/s0896-6273(04)00014-5CrossRefGoogle Scholar
Smith, J., & Baltes, P. B. (1990). Wisdom-related knowledge: Age/cohort differences in response to life-planning problems. Developmental Psychology, 26(3), 494505. doi: 10.1037/0012-1649.26.3.494CrossRefGoogle Scholar
Smith, J., & Baltes, P. B. (1997). Profiles of psychological functioning in the old and oldest old. Psychology and Aging, 12(3), 458–72. doi: 10.1037/0882-7974.12.3.458CrossRefGoogle ScholarPubMed
St. Jacques, P. L., Bessette-Symons, B., & Cabeza, R. (2009). Functional neuroimaging studies of aging and emotion: Fronto-amygdalar differences during emotional perception and episodic memory. Journal of the International Neuropsychological Society, 15(06), 819. doi: 10.1017/s1355617709990439CrossRefGoogle ScholarPubMed
Staudinger, U. M., & Baltes, P. B. (1996). Interactive minds: A facilitative setting for wisdom-related performance? Journal of Personality and Social Psychology, 71(4), 746–62. doi: 10.1037/0022-3514.71.4.746CrossRefGoogle Scholar
Staudinger, U. M., Lopez, D. F., & Baltes, P. B. (1997). The psychometric location of wisdom-related performance: Intelligence, personality, and more? Personality and Social Psychology Bulletin, 23(11), 1200–14. doi: 10.1177/01461672972311007CrossRefGoogle Scholar
Stern, Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society, 8(3), 448–60.CrossRefGoogle ScholarPubMed
Stern, Y., Moeller, J. R., Anderson, K. E., Luber, B., Zubin, N. R., DiMauro, A. A., et al. (2000). Different brain networks mediate task performance in normal aging and AD: Defining compensation. Neurology, 55(9), 1291–7.CrossRefGoogle Scholar
Sternberg, R. J. (1990). Wisdom: Its nature, origins and development. New York, NY: Cambridge University Press.CrossRefGoogle Scholar
Sternberg, R. J. (1998). A balance theory of wisdom. Review of General Psychology, 2(4), 347–65. doi: 10.1037//1089-2680.2.4.347CrossRefGoogle Scholar
Sternberg, R. J., & Jordan, J. (2005). A handbook of wisdom: Psychological perspectives. New York, NY: Cambridge University Press.CrossRefGoogle Scholar
Takahashi, M. (2000). Toward a culturally inclusive understanding of wisdom: Historical roots in the east and west. The International Journal of Aging and Human Development, 51(3), 217–30. doi: 10.2190/h45u-m17w-3ag5-ta49CrossRefGoogle Scholar
Tang, Y. Y., Lu, Q., Fan, M., Yang, Y., & Posner, M. I. (2012). Mechanisms of white matter changes induced by meditation. Proceedings of the National Academy of Sciences of the United States of America, 109(26), 105704. doi: 10.1073/pnas.1207817109CrossRefGoogle ScholarPubMed
Thomas, M. L., Bangen, K. J., Palmer, B. W., Sirkin Martin, A., Avanzino, J. A., Depp, C. A., et al. (2017). A new scale for assessing wisdom based on common domains and a neurobiological model: The San Diego Wisdom Scale (SD-WISE). Journal of Psychiatric Research. doi: 10.1016/j.jpsychires.2017.09.005Google Scholar
Uddin, L. Q., Iacoboni, M., Lange, C., & Keenan, J. P. (2007). The self and social cognition: The role of cortical midline structures and mirror neurons. Trends in Cognitive Sciences, 11(4), 153–7. doi: 10.1016/j.tics.2007.01.001CrossRefGoogle ScholarPubMed
Urgesi, C., Aglioti, S. M., Skrap, M., & Fabbro, F. (2010). The spiritual brain: Selective cortical lesions modulate human self-transcendence. Neuron, 65(3), 309–19. doi: 10.1016/j.neuron.2010.01.026CrossRefGoogle ScholarPubMed
van Elk, M., & Aleman, A. (2017). Brain mechanisms in religion and spirituality: An integrative predictive processing framework. Neuroscience and Biobehavioral Reviews, 73, 359–78. doi: 10.1016/j.neubiorev.2016.12.031CrossRefGoogle ScholarPubMed
Webster, J. D. (2003). An exploratory analysis of a self-assessed wisdom scale. Journal of Adult Development, 10(1), 1322. doi: 10.1023/a:1020782619051CrossRefGoogle Scholar
Webster, J. D. (2007). Measuring the character strength of wisdom. The International Journal of Aging and Human Development, 65(2), 163–83. doi: 10.2190/ag.65.2.dGoogle ScholarPubMed
Webster, J. D. (2009). Wisdom and positive psychosocial values in young adulthood. Journal of Adult Development, 17(2), 7080. doi: 10.1007/s10804-009-9081-zCrossRefGoogle Scholar
Wink, P., & Helson, R. (1997). Practical and transcendent wisdom: Their nature and some longitudinal findings. Journal of Adult Development, 4(1), 115. doi: 10.1007/bf02511845CrossRefGoogle Scholar
Wood, R. M., Rilling, J. K., Sanfey, A. G., Bhagwagar, Z., & Rogers, R. D. (2006). Effects of tryptophan depletion on the performance of an iterated prisoner's dilemma game in healthy adults. Neuropsychopharmacology, 31(5), 1075–84. doi: 10.1038/sj.npp.1300932CrossRefGoogle ScholarPubMed
Worthy, D. A., Gorlick, M. A., Pacheco, J. L., Schnyer, D. M., & Maddox, W. T. (2011). With age comes wisdom. Psychological Science, 22(11), 1375–80. doi: 10.1177/0956797611420301CrossRefGoogle ScholarPubMed
Yang, H., Leaver, A. M., Siddarth, P., Paholpak, P., Ercoli, L., St Cyr, N. M. et al. (2016). Neurochemical and neuroanatomical plasticity following memory training and Yoga interventions in older adults with mild cognitive impairment. Frontiers in Aging Neuroscience, 8, 277. doi: 10.3389/fnagi.2016.00277CrossRefGoogle ScholarPubMed
Young, S. E., Smolen, A., Hewitt, J. K., Haberstick, B. C., Stallings, M. C., Corley, R. P. et al. (2006). Interaction between MAO-A genotype and maltreatment in the risk for conduct disorder: Failure to confirm in adolescent patients. American Journal of Psychiatry, 163(6), 1019–25. doi: 10.1176/ajp.2006.163.6.1019CrossRefGoogle ScholarPubMed
Zelazo, P. D., & Müller, U. (2002). Executive function in typical and atypical development. In U. Goswami (Ed.), Blackwell handbook of childhood cognitive development (pp. 445–69). Malden, MA: Blackwell Publishers Ltd.Google Scholar
Zola-Morgan, S. (1995). Localization of brain function: The legacy of Franz Joseph Gall (1758–1828). Annual Review of Neuroscience, 18(1), 359–83. doi: 10.1146/annurev.ne.18.030195.002043CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×