Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T11:24:06.469Z Has data issue: false hasContentIssue false

Part III - Prenatal development and the newborn

Published online by Cambridge University Press:  26 October 2017

Brian Hopkins
Affiliation:
Lancaster University
Elena Geangu
Affiliation:
Lancaster University
Sally Linkenauger
Affiliation:
Lancaster University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Further reading

De Vries, J.L., & Fong, B.F. (2006). Normal fetal motility: An overview. Ultrasound in Obstetrics & Gynecology, 27, 701711.Google Scholar
De Vries, J.L., & Fong, B.F. (2007). Changes in fetal motility as a result of congenital disorders: An overview. Ultrasound in Obstetrics & Gynecology, 29, 590599.Google Scholar
Kurjak, A., Stanojević, M., Predojević, M., Laušin, I., & Salihagić-Kadić, A. (2012). Neurobehavior in fetal life. Seminars in Fetal & Neonatal Medicine, 17, 319323.Google Scholar
Prechtl, H.F., & Einspieler, C. (1997). Is neurological assessment of the fetus possible? European Journal of Obstetrics & Gynecology and Reproductive Biology, 75, 8184CrossRefGoogle ScholarPubMed
ten Donkelaar, H.T., Lammens, M., & Hori, A. (2014). Clinical neuroembryology: Development and developmental disorders of the human central nervous system (2nd ed.). Berlin: Springer.CrossRefGoogle Scholar

References

Alexander, G.E., DeLong, M.R., & Strick, P.L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neurosciences, 9, 357–81.Google Scholar
Bear, M.F., Connors, B., & Paradiso, M. (2015). Neuroscience: Exploring the brain (4th ed.). Philadelphia, PA: Walters-Kluwer.Google Scholar
Eyre, J.A., Miller, S., Clowry, G.J., Conway, E.A., & Watts, C. (2000). Functional corticospinal projections are established prenatally in the human foetus permitting involvement in the development of spinal motor centres. Brain, 123, 5164.CrossRefGoogle ScholarPubMed
Goulding, M. (2009). Circuits controlling vertebrate locomotion: Moving in a new direction. Nature Reviews Neuroscience, 10, 507518.CrossRefGoogle ScholarPubMed
Grant-Beuttler, M., Glynn, L.M., Salisbury, A.L., Davis, E.P., Holliday, C., & Sandman, C.A. (2011). Development of fetal movement between 26 and 36 weeks’ gestation in response to vibro-acoustic stimulation. Frontiers in Psychology, 2, 350.CrossRefGoogle ScholarPubMed
Hanson, M.G., & Landmesser, L.T. (2003). Increasing the frequency of spontaneous rhythmic activity disrupts pool-specific axon fasciculation and pathfinding of embryonic spinal motoneurons. Journal of Neuroscience, 26, 1276912780.CrossRefGoogle Scholar
Hata, T., Kanenishi, K., & Sasaki, M. (2010). Four-dimensional sonographic assessment of fetal movement in the late first trimester. International Journal of Gynaecology & Obstetrics, 109, 190193.Google Scholar
Hepper, P.G., Dornan, J.C., Lynch, C., & Maguire, J.F. (2012). Alcohol delays the emergence of the fetal elicited startle response, but only transiently. Physiology & Behavior, 107, 7681.Google Scholar
Humphrey, T. (1964). Some correlations between the appearance of human fetal reflexes and the development of the nervous system. Progress in Brain Research, 4, 93135.CrossRefGoogle Scholar
Kanazawa, H., Kawai, M., Kinai, T., Iwanaga, K., Mima, T., & Heike, T. (2014). Cortical muscle control of spontaneous movements in human neonates. European Journal of Neuroscience, 40, 25482553.Google Scholar
Kandel, E.R., Schwartz, J.H., & Jessell, T.M. (2012). Principles of neural science (5th ed.). New York, NY: McGraw-Hill.Google Scholar
Kiehn, O. (2006). Locomotor circuits in the mammalian spinal cord. Annual Review of Neuroscience, 29, 279306.Google Scholar
Kurjak, A., Azumendi, G., Andonotopo, W., & Salihagić-Kadić, A. (2007). Three- and four-dimensional ultrasonography for the structural and functional evaluation of the fetal face. American Journal of Obstetrics & Gynecology, 96, 1628.Google Scholar
Lüchinger, A.B., Hadders-Algra, M., van Kan, C.M., & de Vries, J.I. (2008). Fetal onset of general movements. Pediatric Research, 63, 191195.Google Scholar
Martin, J.H. (2005). The corticospinal system: From development to motor control. Neuroscientist, 11, 161173.Google Scholar
Morecraft, RJ, Stillwell-Morecraft KS, Cipolloni PB, Ge J, McNeal DW, Pandya DN (2012). Cytoarchitecture and cortical connections of the anterior cingulate and adjacent somatomotor fields in the rhesus monkey. Brain Research Bulletin 87, 457–97.CrossRefGoogle Scholar
Mu, J., Slevin, J.C., Qu, D., McCormick, S., & Adamson, S.L. (2008). In vivo quantification of embryonic and placental growth during gestation in mice using micro-ultrasound. Reproductive Biology and Endocrinology, 6, 34.CrossRefGoogle ScholarPubMed
Okado, N., Kakimi, S., & Kojima, T. (1979). Synaptogenesis in the cervical cord of the human embryo: Sequence of synapse formation in a spinal reflex pathway. Journal of Comparative Neurology, 184, 491518.Google Scholar
O’Rahilly, R., & Müller, F. (1987). Developmental stages in human embryos including a revision of Streeter’s “Horizons” and a survey of the Carnegie collection. Washington, DC: Carnegie Institute of Washington.Google Scholar
Purves, D., Augustine, G.J., Fitzpatrick, D., Hall, W.C., LaMantia, A.-S., & White, L.E. (2011). Neuroscience (5th ed.) Sunderland, MA: Sinauer.Google Scholar
Rossignol, S., Dubuc, R., Gossard, J-P. (2006). Dynamic sensorimotor interactions in locomotion. Physiological Reviews, 86, 89–154.CrossRefGoogle Scholar
Sparling, J.W., Van Tol, J., & Chescheir, N.C. (1999). Fetal and neonatal hand movement. Physical Therapy, 79, 2439.Google Scholar
Shiga, T., & Oppenheim, R.W. (1991). Axonal projections and synaptogenesis by supraspinal descending neurons in the spinal cord of the chick embryo. Journal of Comparative Neurology, 305, 8395.CrossRefGoogle ScholarPubMed
Squire, L.R., & Berg, D., Bloom, F.E., du Lac, S., Ghosh, A., & Spitzer, N.C. (2012). Fundamental neuroscience (4th ed.). San Diego, CA: Academic Press.Google Scholar
Udaka, F., Kameyama, M., Tomonaga, M. (1986). Degeneration of Betz cells in motor neuron disease. A Golgi study. Acta Neuropathologica, 70, 289–295.CrossRefGoogle Scholar
Yïgïter, A.B., Gonenc, G., Isci, H., & Guducu, N. (2013). The assessment of fetal behavior of a fetus with lissencephaly by 4D ultrasound. Donald School Journal of Ultrasound in Obstetrics and Gynecology, 7, 208212.Google Scholar

Further reading

Buckingham, M. (2006). Myogenic progenitor cells and skeletal myogenesis in vertebrates. Current Opinion in Genetics & Development, 16, 525532.CrossRefGoogle ScholarPubMed
Nitzan, E., & Kalcheim, C. (2013). Neural crest and somitic mesoderm as paradigms to investigate cell fate decisions during development. Development, Growth & Differentiation, 55, 6078.CrossRefGoogle ScholarPubMed
Paxton, J.Z., Baar, K., & Grover, L.M. (2012). Current progress in enthesis repair: Strategies for interfacial tissue engineering. Orthopedic and Muscular System, S1, 003.Google Scholar
Tuan, R.S. (1998). Cellular and molecular regulation of embryonic skeletal development and morphogenesis. Cells and Materials, 8, 318.Google Scholar

References

Blechschmidt, E. (1978). Anatomie und ontogenese des menschen. Heidelberg: Quelle & Meyer.Google Scholar
Buckingham, M., & Rigby, P.W. (2014). Gene regulatory networks and transcriptional mechanisms that control myogenesis. Developmental Cell, 28, 225238.Google Scholar
Charvet, B., Ruggiero, F., & Le Guellec, D. (2012). The development of the myotendinous junction: A review. Muscles Ligaments and Tendons Journal, 2, 5363.Google Scholar
Decker, R.S., Koyama, E., & Pacifici, M. (2014). Genesis and morphogenesis of limb synovial joints and articular cartilage. Matrix Biology, 39, 510.CrossRefGoogle ScholarPubMed
Gibson, G. (1998). Active role of chondrocyte apoptosis in endochondral ossification. Microscopy Research and Technique, 43, 191204.Google Scholar
Gibson, G., Lin, D.L., Wang, X., & Zhang, L. (2001). The release and activation of transforming growth factor beta2 associated with apoptosis of chick hypertrophic chondrocytes. Journal of Bone and Mineral Research, 16, 23302338.Google Scholar
Kalcheim, C., & Ben-Yair, R. (2005). Cell rearrangements during development of the somite and its derivatives. Current Opinions in Genetics and Development, 15, 371380.Google Scholar
Nowlan, N.C., Murphy, P.M, & Prendergast, P.J. (2007). Mechanobiology of embryonic limb development. Annals of the New York Academy of Sciences, 1001, 389411.CrossRefGoogle Scholar
Nowlan, N.C., Prendergast, P.J., & Murphy, P. (2008) Identification of mechanosensitive genes during embryonic bone formation. PloS Computational Biology, 4, e1000250.Google Scholar
Pacifici, M., Koyama, E., & Iwamoto, M. (2005). Mechanisms of synovial joint and articular cartilage formation: Recent advances, but many lingering mysteries. Birth Defects Res C Embryo Today, 75, 237–48.Google Scholar
Romero, N.B., Mezmezian, M., & Fidzianska, A. (2013). Main steps of skeletal muscle development in the human: Morphological analysis and ultrastructural characteristics of developing human muscle. In Dulac, O., Lassonde, M., & Sarnat, H.B. (Eds.), Handbook of clinical neurology: Pediatric neurology, Part III (1st ed., pp. 12991310). London, UK: Elsevier.Google Scholar
Standring, S. (Ed.). Gray’s anatomy: The anatomical basis of clinical practice (40th ed.) London, UK: Churchill Livingstone/Elsevier.Google Scholar
Thomopoulos, S., Genin, G.M., & Galatz, L.M. (2010). The development and morphogenesis of the tendon-to-bone insertion: What development can teach us about healing. Journal of Musculoskeletal and Neuronal Interactions, 10, 3545.Google Scholar
Zelzer, E., Blitz, E., Killian, M.L., & Thomopoulos, S. (2014). Tendon-to-bone attachment: From development to maturity. Birth Defects Research Part C: Embryo Today, 102, 101112.Google Scholar

Further reading

Benders, M.J., Palmu, K., Menache, C., Borradori-Tolsa, C., Lazeyras, F., Sizonenko, S.,… & Hüppi, P.S. (2014). Early brain activity relates to subsequent brain growth in premature infants. Cerebral Cortex, 25, 30143024.Google Scholar
Eswaran, H., Haddad, N.I., Shihabuddin, B.S., Preissl, H., Siegel, E.R., Murphy, P., & Lowery, C.L. (2007). Non-invasive detection and identification of brain activity patterns in the developing fetus. Clinical Neurophysiology, 118, 19401946.CrossRefGoogle ScholarPubMed
Tymofiyeva, O., Hess, C.P., Ziv, E., Tian, N., Bonifacio, S.L., McQuillen, P.S., … & Xu, D. (2012). Towards the “baby connectome”: Mapping the structural connectivity of the newborn brain. PLoS ONE, 7, e31029.Google Scholar

References

Anderson, A.L., & Thomason, M.E. (2013). Functional plasticity before the cradle: A review of neural functional imaging in the human fetus. Neuroscience & Biobehavioral Reviews, 37, 22202232.Google Scholar
Ando, Y., & Hattori, H. (1970). Effects of intense noise during fetal life upon postnatal adaptability (statistical study of the reactions of babies to aircraft noise). Journal of the Acoustical Society of America, 47, 11281130.Google Scholar
Aoun, P., Jones, T., Shaw, G.L., & Bodner, M. (2005). Long-term enhancement of maze learning in mice via a generalized Mozart effect. Neurological Research, 27, 791796.Google Scholar
Aylward, G.P. (2002). Cognitive and neuropsychological outcomes: More than IQ scores. Mental Retardation and Developmental Disabilities Research Reviews, 8, 234240.Google Scholar
Azoulay, R., Fallet-Bianco, C., Garel, C., Grabar, S., Kalifa, G., & Adamsbaum, C. (2006). MRI of the olfactory bulbs and sulci in human fetuses. Pediatric Radiology, 36, 97107.Google Scholar
Bahrick, L.E., Lickliter, R., & Flom, R. (2004). Intersensory redundancy guides the development of selective attention, perception, and cognition in infancy. Current Directions in Psychological Science, 13, 99102.Google Scholar
Becker, J., Czamara, D., Scerri, T.S., Ramus, F., pe, V., Talcott, J.B., … & Schumacher, J. (2014). Genetic analysis of dyslexia candidate genes in the European cross-linguistic NeuroDys cohort. European Journal of Human Genetics, 22, 675680.Google Scholar
Blinowska, K.J., & Kaminski, M. (2013). Functional brain networks: Random, “small world” or deterministic? PLoS ONE, 8, e78763.CrossRefGoogle ScholarPubMed
Brauer, J., Anwander, A., & Friederici, A.D. (2011). Neuroanatomical prerequisites for language functions in the maturing brain. Cerebral Cortex, 21, 459466.Google Scholar
Chandrasekar, G., Vesterlund, L., Hultenby, K., Tapia-Páez, I., & Kere, J. (2013). The zebrafish orthologue of the dyslexia candidate gene DYX1C1 is essential for cilia growth and function. PLoS One, 8, e63123.CrossRefGoogle ScholarPubMed
Chandrasekaran, B., & Kraus, N. (2010). The scalp-recorded brainstem response to speech: Neural origins and plasticity. Psychophysiology, 47, 236246.Google Scholar
Chang, E., & Merzenich, M.M. (2003). Environmental noise retards auditory cortical development. Science, 300, 498502.Google Scholar
Cheour, M., Čėponiené, R., Leppänen, P., Alho, K., Kujala, T., Renlund, M., … & Näätänen, R. (2002). The auditory sensory memory trace decays rapidly in newborns. Scandinavian Journal of Psychology, 43, 3339.CrossRefGoogle ScholarPubMed
Crider, K.S., Whitehead, N., & Buus, R.M. (2005). Genetic variation associated with preterm birth: A HuGE review. Genetics in Medicine, 7, 593604.Google Scholar
De Araujo, I.E., Rolls, E.T., Kringelbach, M.L., McGlone, F., & Phillips, N. (2003). Taste–olfactory convergence, and the representation of the pleasantness of flavour, in the human brain. European Journal of Neuroscience, 18, 20592068.Google Scholar
De Vries, J.I.P., & Fong, B.F. (2006). Normal fetal motility: An overview. Ultrasound in Obstetrics & Gynecology, 27, 702711.Google Scholar
De Vries, J.I.P., Visser, G.H.A., & Prechtl, H.F. (1982). The emergence of fetal behaviour. I. Qualitative aspects. Early Human Development, 7, 301322.Google Scholar
DiPietro, J.A., Hodgson, D.M., Costigan, K.A., Hilton, S.C., & Johnson, T.R. (1996). Fetal neurobehavioral development. Child Development, 67, 25532567.Google Scholar
Elliott, G.B., & Elliott, K.A. (1964). Some pathological, radiological and clinical implications of the precocious development of the human ear. The Laryngoscope, 74, 11601171.Google Scholar
Eswaran, H., Wilson, J.D., Preissl, H., Robinson, S.E., Vrba, J., Murphy, P., … & Lowery, C.L. (2002). Magnetoencephalographic recordings of visual evoked brain activity in the human fetus. Lancet, 360, 779780.Google Scholar
Feldman, R., Rosenthal, Z., & Eidelman, A.I. (2014). Maternal–preterm skin-to-skin contact enhances child physiologic organization and cognitive control across the first 10 years of life. Biological Psychiatry, 75, 5664.Google Scholar
Finney, E.M., Fine, I., & Dobkins, K.R. (2001). Visual stimuli activate auditory cortex in the deaf. Nature Neuroscience, 4, 11711173.Google Scholar
Fulford, J., Vadeyar, S.H., Dodampahala, S.H., Moore, R.J., Young, P., Baker, P.N., … & Gowland, P.A. (2003). Fetal brain activity in response to a visual stimulus. Human Brain Mapping, 20, 239245.Google Scholar
Friederici, A.D., Friedrich, M., & Weber, C. (2002). Neural manifestation of cognitive and precognitive mismatch detection in early infancy. Neuroreport, 13, 12511254.Google Scholar
Gibson, J.J. (1966). The senses considered as perceptual systems. Boston, MA: Houghton Mifflin.Google Scholar
Granier-Deferre, C., Bassereau, S., Ribeiro, A., Jacquet, A.Y., & DeCasper, A.J. (2011). A melodic contour repeatedly experienced by human near-term fetuses elicits a profound cardiac reaction one month after birth. PLoS ONE, 6, e17304.Google Scholar
Griffiths, S.K., Brown, Jr, W.S., Gerhardt, K.J., Abrams, R.M., & Morris, R.J. (1994). The perception of speech sounds recorded within the uterus of a pregnant sheep. Journal of the Acoustical Society of America, 96, 20552063.Google Scholar
Hannon, E.E., & Trehub, S.E. (2005). Tuning in to musical rhythms: Infants learn more readily than adults. Proceedings of the National Academy of Sciences of the United States of America, 102, 1263912643.Google Scholar
Hannon, E.E., & Trainor, L.J. (2007). Music acquisition: Effects of enculturation and formal training on development. Trends in Cognitive Sciences, 11, 466472.Google Scholar
Hatoum, N., Clapp, J.F., Newman, M.R., Dajani, N., & Amini, S.B. (1997). Effects of maternal exercise on fetal activity in late gestation. Journal of Maternal–Fetal and Neonatal Medicine, 6, 134139.CrossRefGoogle ScholarPubMed
Hooker, D. (1952). Early human fetal activity. Anatomical Record, 113, 503.Google Scholar
Huotilainen, M. (2010). Building blocks of fetal cognition: Emotion and language. Infant and Child Development, 19, 9498.Google Scholar
Huttenlocher, P. (1990). Morphometric study of human cerebral cortex development. Neuropsychologia, 28, 517527.CrossRefGoogle ScholarPubMed
Hykin, J., Moore, R., Duncan, K., Clare, S., Baker, P., Johnson, I., … & Gowland, P. (1999). Fetal brain activity demonstrated by functional magnetic resonance imaging. Lancet, 354, 645646.CrossRefGoogle ScholarPubMed
Jaime, M., Bahrick, L., & Lickliter, R. (2010). The critical role of temporal synchrony in the salience of intersensory redundancy during prenatal development. Infancy, 15, 6182.Google Scholar
James, D.K. (2010). Fetal learning: A critical review. Infant and Child Development, 19, 4554.CrossRefGoogle Scholar
Jamon, M. (2104). The development of vestibular system and related functions in mammals: Impact of gravity. Frontiers in Integrative Neuroscience, 8, 11.Google Scholar
Jardri, R., Houfflin-Debarge, V., Delion, P., Pruvo, J., Thomas, P., & Pins, D. (2012). Assessing fetal response to maternal speech using a noninvasive functional brain imaging technique. International Journal of Developmental Neuroscience, 30, 159161.Google Scholar
Johnson, M.H. (2001). Functional brain development in humans. Nature Reviews Neuroscience, 2, 475483.Google Scholar
Katz, L., & Shatz, C. (1996). Synaptic activity and the construction of cortical circuits. Science, 274, 11331138.CrossRefGoogle ScholarPubMed
Keller, P., & Rieger, M. (2009). Editorial comment for Special Issue: Musical movement and synchronization. Music Perception, 26, 397400.Google Scholar
Kiefer-Schmidt, I., Raufer, J., Brändle, J., Münßinger, J., Abele, H., Wallwiener, D., … & Preissl, H. (2013). Is there a relationship between fetal brain function and the fetal behavioral state? A fetal MEG-study. Journal of Perinatal Medicine, 41, 605612.CrossRefGoogle Scholar
Kostović, I., & Jovanov-Milošević, N. (2006). The development of cerebral connections during the first 20–45 weeks’ gestation. Seminars in Fetal and Neonatal Medicine, 11, 415422.CrossRefGoogle ScholarPubMed
Kostović, I., & Judas, M. (2010). The development of the subplate and thalamocortical connections in the human foetal brain. Acta Paediatrica, 99, 11191127.Google Scholar
Kuhl, P.K. (2004). Early language acquisition: Cracking the speech code. Nature Reviews Neuroscience, 5, 831843.Google Scholar
Lahav, A. (2015). Questionable sound exposure outside of the womb: Frequency analysis of environmental noise in the neonatal intensive care unit. Acta Paediatrica, 104, e14e18.Google Scholar
Lecanuet, J.P., & Schaal, B. (1996). Fetal sensory competencies. European Journal of Obstetrics & Gynecology and Reproductive Biology, 68, 123.Google Scholar
Leppänen, P.H., Hämäläinen, J.A., Salminen, H.K., Eklund, K.M., Guttorm, T.K., Lohvansuu, K., … & Lyytinen, H. (2010). Newborn brain event-related potentials revealing atypical processing of sound frequency and the subsequent association with later literacy skills in children with familial dyslexia. Cortex, 46, 13621376.CrossRefGoogle ScholarPubMed
Lillo-Martin, D., de Quadros, R.M., Pichler, D.C., & Fieldsteel, Z. (2014). Language choice in bimodal bilingual development. Frontiers in Psychology, 5, 1163.Google Scholar
Maier, J.X., Wachowiak, M., & Katz, D.B. (2012). Chemosensory convergence on primary olfactory cortex. Journal of Neuroscience, 32, 1703717047.Google Scholar
Mampe, B., Friederici, A.D., Christophe, A., & Wermke, K. (2009). Newborns’ cry melody is shaped by their native language. Current Biology, 19, 19941997.Google Scholar
Mao, Y.T., Hua, T.M., & Pallas, S.L. (2011). Competition and convergence between auditory and cross-modal visual inputs to primary auditory cortical areas. Journal of Neurophysiology, 105, 15581573.Google Scholar
Mao, Y.T., & Pallas, S.L. (2013). Cross-modal plasticity results in increased inhibition in primary auditory cortical areas. Neural Plasticity, 2013, 530651.Google Scholar
Martin, R.P., Noyes, J., Wisenbaker, J., & Huttunen, M.O. (1999). Prediction of early childhood negative emotionality and inhibition from maternal distress during pregnancy. Merrill-Palmer Quarterly, 45, 370391.Google Scholar
Martynova, O., Kirjavainen, J., & Cheour, M. (2003). Mismatch negativity and late discriminative negativity in sleeping human newborns. Neuroscience Letters, 340, 7578.Google Scholar
Mistretta, C.M., & Bradley, R.M. (1978). Taste responses in sheep medulla: Changes during development. Science, 202, 535537.Google Scholar
Moon, C.M., & Fifer, W.P. (2000). Evidence of transnatal auditory learning. Journal of Perinatology, 20, S37–44.Google Scholar
Moon, C., Lagercrantz, H., & Kuhl, P.K. (2013). Language experienced in utero affects vowel perception after birth: A two‐country study. Acta Paediatrica, 102, 156160.Google Scholar
Moss, E., & St-Laurent, D. (2001). Attachment at school age and academic performance. Developmental Psychology, 37, 863874.CrossRefGoogle ScholarPubMed
Muir, D.W., & Mitchell, D.E. (1973). Visual resolution and experience: Acuity deficits in cats following early selective visual deprivation. Science, 180, 420422.Google Scholar
Nijhuis, J.G., Prechtl, H.F., Martin Jr, C.B., & Bots, R.S. G.M. (1982). Are there behavioural states in the human fetus? Early Human Development, 6, 177195.Google Scholar
Orton, J., Spittle, A., Doyle, L., Anderson, P., & Boyd, R. (2009). Do early intervention programmes improve cognitive and motor outcomes for preterm infants after discharge? A systematic review. Developmental Medicine & Child Neurology, 51, 851859.Google Scholar
Parraguez, V.H., Sales, F., Valenzuela, G.J., Vergara, M., Catalán, L., & Serón-Ferré, M. (1998). Diurnal changes in light intensity inside the pregnant uterus in sheep. Animal Reproduction Science, 52, 123130.Google Scholar
Partanen, E., Kujala, T., Näätänen, R., Liitola, A., Sambeth, A., & Huotilainen, M. (2013a). Learning-induced neural plasticity of speech processing before birth. Proceedings of the National Academy of Sciences, 100, 1514515150.CrossRefGoogle Scholar
Partanen, E., Kujala, T., Tervaniemi, M., & Huotilainen, M. (2013b). Prenatal music exposure induces long-term neural effects. PLoS ONE, 8, e78946.Google Scholar
Patrick, J., Campbell, K., Carmichael, L., & Probert, C. (1982). Influence of maternal heart rate and gross fetal body movements on the daily pattern of fetal heart rate near term. American Journal of Obstetrics and Gynecology, 144, 533538.CrossRefGoogle ScholarPubMed
Paus, T. (2010). Growth of white matter in the adolescent brain: Myelin or axon? Brain and Cognition, 72, 2635.Google Scholar
Perani, D., Saccuman, M.C., Scifo, P., Anwander, A., Spada, D., Baldoli, C., … & Friederici, A.D. (2011). Neural language networks at birth. Proceedings of the National Academy of Sciences, 108, 1605616061.Google Scholar
Phillips-Silver, J., & Trainor, L.J. (2005). Feeling the beat: Movement influences infant rhythm perception. Science, 308, 14301430.Google Scholar
Plantinga, J., & Trainor, L.J. (2005). Memory for melody: Infants use a relative pitch code. Cognition, 98, 111.Google Scholar
Rao, S., Chun, C., Fan, J., Kofron, J.M., Yang, M.B., Hegde, R.S., … & Lang, R.A. (2013). A direct and melanopsin-dependent fetal light response regulates mouse eye development. Nature, 494, 243246.CrossRefGoogle ScholarPubMed
Richards, D.S., Frentzen, B., Gerhardt, K.J., McCann, M.E., & Abrams, R.M. (1992). Sound levels in the human uterus. Obstetrics & Gynecology, 80, 186190.Google ScholarPubMed
Salmaso, N., Jablonska, B., Scafidi, J., Vaccarino, F.M., & Gallo, V. (2014). Neurobiology of premature brain injury. Nature Neuroscience, 17, 341346.Google Scholar
Schaal, B., Hummel, T., & Soussignan, R. (2004). Olfaction in the fetal and premature infant: Functional status and clinical implications. Clinics in Perinatology, 31, 261285.Google Scholar
Schaal, B., Marlier, L., & Soussignan, R. (1998). Olfactory function in the human fetus: Evidence from selective neonatal responsiveness to the odor of amniotic fluid. Behavioral Neuroscience, 112, 14381449.Google Scholar
Schöpf, V., Schlegl, T., Jakab, A., Kasprian, G., Woitek, R., Prayer, D., & Langs, G. (2014). The relationship between eye movement and vision develops before birth. Frontiers in Human Neuroscience, 8, 755.Google Scholar
Sheridan, C., Draganova, R., Ware, M., Murphy, P., Govindan, R., Siegel, E.R., … & Preissl, H. (2010). Early development of brain responses to rapidly presented auditory stimulation: A magnetoencephalographic study. Brain and Development, 32, 642657.CrossRefGoogle ScholarPubMed
Small, D.M., Jones-Gotman, M., Zatorre, R.J., Petrides, M., & Evans, A.C. (1997). Flavor processing: More than the sum of its parts. Neuroreport, 8, 39133917.Google Scholar
Spence, M.J., & DeCasper, A.J. (1987). Prenatal experience with low-frequency maternal-voice sounds influence neonatal perception of maternal voice samples. Infant Behavior and Development, 10, 133142.Google Scholar
Starr, A., Amlie, R.N., Martin, W.H., & Sanders, S. (1977). Development of auditory function in newborn infants revealed by auditory brainstem potentials. Pediatrics, 60, 831839.Google Scholar
Thomason, M.E., Grove, L.E., Lozon, T.A., Vila, A.M., Ye, Y., Nye, M.J., … & Romero, R. (2015). Age-related increases in long-range connectivity in fetal functional neural connectivity networks in utero. Developmental Cognitive Neuroscience, 11, 96104.Google Scholar
Van den Bergh, B., Mulder, E., Mennes, M, & Glover, V. (2005). Antenatal maternal anxiety and stress and the neurobehavioural development of the fetus and child: Links and possible mechanisms. A review. Neuroscience and Biobehavioral Reviews, 29, 237258.Google Scholar
Vanhatalo, S., & Kaila., K. (2006). Development of neonatal EEG activity: From phenomenology to physiology. Seminars in Fetal Neonatal Medicine, 11, 471478.Google Scholar
Wallace, M.T. (2004). The development of multisensory processes. Cognitive Processing, 5, 6983.Google Scholar
Werker, J.F., & Tees, R.C. (1999). Influences on infant speech processing: Toward a new synthesis. Annual Review of Psychology, 50, 509535.Google Scholar
Yakovlev, P.I., & Lecours, A.R. (1967). The myelogenetic cycles of regional maturation of the brain. In Minkowski, A. (Ed.), Regional development of the brain in early life (pp. 370). Oxford, UK: Blackwell.Google Scholar
Yates, B.J. (1996). Vestibular influences on the autonomic nervous system. Annals of the New York Academy of Sciences, 781, 458473.Google Scholar

Further reading

Rosenberg, K.R., & Trevathan, W.R. (2001). The evolution of human birth. Scientific American, 285, 7277.Google Scholar
Trevathan, W.R. (2011) Human birth: An evolutionary perspective. New York, NY: Aldine De Gruyter.Google Scholar
Trevathan, W.R., & Rosenberg, K.R. (Eds.). (2016). Costly and cute: Helpless infants and human evolution. Santa Fe, NM: School for Advanced Research.Google Scholar

References

Clancy, B., Darlington, R.B., & Finlay, B.L. (2001). Translating developmental time across mammalian species. Neuroscience, 105, 717.Google Scholar
DeSilva, J.M., & Lesnik, J.J. (2008). Brain size at birth throughout human evolution: A new method for estimating neonatal brain size in hominins. Journal of Human Evolution, 55, 10641074.Google Scholar
Dunsworth, H.M., Warrener, A.G., Deacon, T., Ellison, P.T., & Pontzer, H. (2012). Metabolic hypothesis for human altriciality. Proceedings of National Academy of Sciences, 109, 1521215216.Google Scholar
Hirata, S., Fuwa, K., Sugama, K., Kusunoki, K., & Takeshita, H. (2011). Mechanism of birth in chimpanzees: Humans are not unique among primates. Biology Letters, 7, 686688.Google Scholar
Hodnett, E.D., Gates, S., Hofmeyr, G.J., & Sakala, C. (2013). Continuous support for women during childbirth. Cochrane Data Base of Systematic Reviews, 7, CD003766.Google Scholar
Hrdy, S.B. (2011). Mothers and others: The evolutionary origins of mutual understanding. Cambridge, MA: Harvard University Press.Google Scholar
Klaus, M.H., & Kennell, J.H. (1982). Parent–infant bonding. St. Louis, MO: Mosby.Google Scholar
Montagu, A. (1961). Neonatal and infant immaturity in man. Journal of American Medical Association, 178, 5657.Google Scholar
Portmann, A. (1944). A zoologist looks at humankind. New York, NY: Columbia University Press.Google Scholar
Trevathan, W.R. (1988). Fetal emergence patterns in evolutionary perspective. American Anthropologist, 90, 674681.CrossRefGoogle Scholar
Washburn, S. (1960). Tools and human evolution. Scientific American, 203, 315.Google Scholar

Further reading

Bard, K.A. (2000). Crying in infant primates: Insights into the development of crying in chimpanzees. In R. Barr, B. Hopkins, & J. Green (Eds). Crying as a sign, a symptom and a signal: Developmental and clinical aspects of early crying behavior (pp. 157–175). London, UK: MacKeith Press.Google Scholar
Murray, L., & Trevarthen, C. (1985). Emotional regulation of interactions between two-month-olds and their mothers. In T. M. Field & N. A. Fox (Eds.), Social perception in infants (pp. 177–197). Ablex, NJ: Norwood.Google Scholar
Nagy, E., Pilling, K., Molnar, P, & Orvos, H. (2013). Imitation of tongue protrusion in human neonates: specificity of the response in a large sample. Developmental Psychology, 49, 1628–1638.Google Scholar
Prechtl, H.F.R. (1974). The behavioural states of the newborn infant. Brain Research, 76, 185–212.Google Scholar
Wolff, P. H. (1966). The causes, controls and organization of behavior in the neonate. Psychological Issues, 5, 1–105.Google Scholar

References

Bard, K. (2007). Neonatal imitation in chimpanzees (Pan troglodytes) tested with two paradigms. Animal Cognition, 10, 233242.Google Scholar
Bard, K.A. (2012). Emotional engagement: How chimpanzee minds develop. In de Waal, F. & Ferrari, P. (Eds.), The primate mind: Built to engage with other minds (pp. 224245). Cambridge, MA: Harvard University Press.Google Scholar
Bard, K.A., & Leavens, D.A. (2014). The importance of development for comparative primatology. Annual Review of Anthropology, 43, 183200.Google Scholar
Bard, K.A., Hopkins, W.D., & Fort, C. (1990). Lateral bias in infant chimpanzees (Pan troglodytes). Journal of Comparative Psychology, 104, 309321.Google Scholar
Bard, K.A., Brent, L., Lester, B., Worobey, J., & Suomi, S.J. (2011). Neurobehavioral integrity of chimpanzee newborns: Comparisons across groups and across species reveal gene–environment interaction effects. Infant and Child Development, 20, 4793.CrossRefGoogle ScholarPubMed
Brazelton, T.B., & Nugent, J.K. (1995). Neonatal behavioral assessment scale (3rd ed.). London, UK: Mac Keith Press.Google Scholar
Bullowa, M. (Ed.) (1979). Before speech: The beginning of interpersonal communication. Cambridge, UK: Cambridge University Press.Google Scholar
Field, T. (2007). The amazing infant. Oxford, UK: Blackwell.Google Scholar
Kugiumutzakis, G., Kokkinaki, T., Makrodimitraki, M., & Vitalaki, E. (2005). Emotions in early mimesis. In Nadel, J. & Muir, D. (Eds.), Emotional development (pp. 161182). Oxford, UK: Oxford University Press.Google Scholar
Marx, V., & Nagy, E. (2015). Fetal behavioural responses to maternal voice and touch. PLoS ONE, 10, e012918.Google Scholar
Nagy, E. (2008). Innate intersubjectivity: Newborns’ sensitivity to communication disturbance, Developmental Psychology, 44, 17791784.Google Scholar
Nagy, E. (2011). The newborn infant: A missing stage in developmental psychology. Infant and Child Development, 20, 319.Google Scholar
Nagy, E., & Molnar, P. (2004). Homo imitans or homo provocans? The phenomenon of neonatal imitation. Infant Behavior & Development, 27, 5463.Google Scholar
Nagy, E., Pal, A., & Orvos, P. (2014). Learning to imitate individual finger movements by the human neonate, Developmental Science, 17, 851857.Google Scholar
Reissland, N., Francis, B., Mason, J., & Lincoln, K. (2011). Do facial expressions develop before birth? PLoS ONE, 6, e24081.Google Scholar
Rigato, S., Menon, E., Johnson, M.H., Farafina, D., & Ferroni, T. (2011). Direct eye gaze may modulate face recognition in newborns. Infant and Child Development, 20, 2034.Google Scholar
Rugani, R., Salva, O.R., Regolin, L., & Vallortigara, G. (2015). Brain asymmetry modulates perception of biological motion in newborn chicks (Gallus gallus). Behavioural Brain Research, 290, 17.Google Scholar
Soltis, J. (2004). The signal functions of early infant crying. Behavioral and Brain Sciences, 27, 443490.Google Scholar
Van der Meer, A.L.H., Van der Weel, F.R., & Lee, D.N. (1995). The functional significance of arm movements in neonates. Science, 267, 693695.Google Scholar
Zeifman, D., Delaney, S., & Blass, E.M. (1996). Sweet taste, looking, and calm in 2- and 4-week-old infants: The eyes have it. Developmental Psychology, 32, 10901099.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×