Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-29T20:00:57.175Z Has data issue: false hasContentIssue false

17 - Ant-Plant-Herbivore Interactions in Northern Neotropical Agroecosystems

from Part V - Applied Ant Ecology: Agroecosystems, Ecosystem Engineering, and Restoration

Published online by Cambridge University Press:  01 September 2017

Paulo S. Oliveira
Affiliation:
Universidade Estadual de Campinas, Brazil
Suzanne Koptur
Affiliation:
Florida International University
Get access
Type
Chapter
Information
Ant-Plant Interactions
Impacts of Humans on Terrestrial Ecosystems
, pp. 356 - 376
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature cited

Aguirre, A., Coates, R., Cumplido-Barragán, G., Campos-Villanueva, A. and Díaz-Castelazo, C. (2013). Morphological caracterization of extrafloral nectaries and associated ants in tropical vegetation of Los Tuxtlas, Mexico. Flora, 208, 147156.CrossRefGoogle Scholar
Aldana, J., Calvache, H. and Aria, D. (2000). Programa comercial de manejo de Leptopharsa gibbicarina Froeschner (Hemiptera: Tingidae) con la hormiga Crematogaster spp. en una plantación de palma de aceite. Palmas, 21, 167173.Google Scholar
Altieri, M. A. and Nicholls, C. I. (2013). Agroecología y resiliencia al cambio climático: principios y consideraciones metodológicas. Agroecología, 8, 720.Google Scholar
Armbrecht, I. and Gallego, M. C. (2007). Testing ant predation on the coffee berry borer in shaded and sun coffee plantations in Colombia. Entomologia Experimentalis et Applicata, 124, 261267.CrossRefGoogle Scholar
Armbrecht, I., Rivera, L. and Perfecto, I. (2005). Reduced diversity and complexity in the leaf litter ant assemblage of Colombian coffee plantations. Conservation Biology, 19, 897907.Google Scholar
Barnett, A. A., Almeida, T., Andrade, R. et al. (2015). Ants and their plants: Pseudomyrmex ants reduce primate, parrot and squirrel predation on Macrolobium acaciifolium (Fabaceae) seeds in Amazonian Brazil. Biological Journal of the Linnean Society, 114, 260273.CrossRefGoogle Scholar
Bixenmann, R. J., Coley, P. D. and Kursar, T. A. (2013). Developmental changes in direct and indirect defenses in the young leaves of the Neotropical tree genus Inga (Fabaceae). Biotropica, 45, 175184.CrossRefGoogle Scholar
Blüthgen, N. and Feldhaar, H. (2010). Food and shelter: how resources influence ant ecology. In Ant ecology. ed. Lach, L., Parr, C. L. and Abbott, K. L.. New York: Oxford University Press, pp. 115136.Google Scholar
Bol, M. and Vroomen, D. (2008). The succession of pasture land towards original cloud forest in the pre-mountain area of Costa Rica. Bachelor thesis research for Tropical Forest. Van Hall Larenstein Institute.Google Scholar
Buckley, R. C. (1982). Ant-plant interactions: a world review. In Ant-plant interactions in Australia. ed. Buckley, R. C.. The Hague, Australia: Dr W. Junk Publishers, pp. 111141.Google Scholar
Carabalí-Banguero, D. J., Wyckhuys, K. A. G., Montoya-Lerma, J., Kondo, T. and Lundgren, J. G. (2013). Do additional sugar sources affect the degree of attendance of Dysmicoccus brevipes by the fire ant Solenopsis geminata? Entomologia Experimentalis et Applicata, 148, 6573.CrossRefGoogle Scholar
Christianini, A. V., Oliveira, P. S., Bruna, E. M. and Vasconcelos, H. L. (2014). Fauna in decline: meek shall inherit. Science, 345, 1129.Google Scholar
Dáttilo, W. and Dyer, L. (2014). Canopy openness enhances diversity of ant-plant interactions in the Brazilian Amazon rain forest. Biotropica, 46, 712719.Google Scholar
Davidson, D. W. (2008). Ant-plant interactions. In Encyclopedia of entomology, ed. Capinera, J. L.. Florida: Springer, pp. 166185.Google Scholar
Davidson, D. W., Cook, S. C., Snelling, R. and Chua, T. H. (2003). Explaining the abundance of ants in lowland tropical rainforest canopies. Science, 300, 969972.CrossRefGoogle ScholarPubMed
De la Mora, A., García-Ballinas, J. A. and Philpott, S. M. (2015). Local, landscape and diversity drivers of predation services provided by ants in a coffee landscape in Chiapas, Mexico. Agriculture, Ecosystems and Environment, 201, 8391.CrossRefGoogle Scholar
De la Mora, A., Livingston, G. and Philpott, S. M. (2008). Arboreal ant abundance and leaf miner damage in coffee agroecosystems in Mexico. Biotropica, 40, 742746.CrossRefGoogle Scholar
Dejean, A., Corbara, B., Fernández, F. and Delabie, J. H. C. (2003). Mosaicos de hormigas arbóreas en bosques y plantaciones tropicales. In Introducción a las hormigas de la región Neotropical, ed. Fernández, F.. Bogotá: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, pp 149158.Google Scholar
Del-Claro, K., Rico-Gray, V., Torezan-Silingardi, H. M. et al. (2016). Loss and gains in ant-plant interactions mediated by extrafloral nectar: fidelity, cheats and lies. Insectes Sociaux, published online, 15 February 2016. DOI 10.1007/s00040-016-0466-2.Google Scholar
Dirzo, R., Young, H. S., Galetti, M. et al. (2014). Defaunation in the anthropocene. Science, 345, 401406.CrossRefGoogle ScholarPubMed
Domínguez-Haydar, Y. and Armbrecht, I. (2011). Response of ants and their seed removal in rehabilitation areas and forests at El Cerrejón coal mine in Colombia. Restoration Ecology, 19, 178184.Google Scholar
Escobar, S., Armbrecht, I. and Calle, Z. (2007). Transporte de semillas por hormigas in bosques y agroecosistemas ganaderos de los Andes colombianos. Agroecología, 2, 6584.Google Scholar
Escobar-Ramírez, S., Duque, J. S., Henao, N., Hurtado-Giraldo, A. and Armbrecht, I. (2012). Removal of nomyrmecochorous seeds by ants: role of ants in cattle grasslands. Psyche, 2012, Article ID 951029, doi:10.1155/2012/951029, pp. 18.CrossRefGoogle Scholar
Falcão, J. C. F., Dáttilo, W. and Izzo, T. J. (2015). Efficiency of different planted forests in recovering biodiversity and ecological interactions in Brazilian Amazon. Forest Ecology and Management, 339, 105111.Google Scholar
FAO. (2006). Livestock´s long shadow: environmental bases and options. http://go.nature.com/BFrtHv (retrieved 1 January 2016).Google Scholar
Gallego-Ropero, M. C. and Armbrecht, I. (2005). Depredación por hormigas sobre la broca del café en cafetales cultivados bajo dos niveles de sombra en Colombia. Revista Manejo Integrado de Plagas y Agroecología (Costa Rica), 76, 19.Google Scholar
Gallegos, S. C., Hensen, I. and Schieuning, M. (2014). Secondary dispersal by ants promotes forest regeneration after deforestation. Journal of Ecology, 102, 659666.CrossRefGoogle Scholar
Girón, K., Lastra, L. A., Gómez, L. A. and Mesa, N. C. (2005). Observaciones acerca de la biología y los enemigos naturales de Saccaricoccus sacchari y Pulvinaria pos elongata, dos homópteros asociados con la hormiga loca en caña de azúcar. Revista Colombiana de Entomología, 31, 2935.Google Scholar
Gonthier, D. J., Ennis, K. K., Farinas, S. et al. (2014). Biodiversity conservation in agriculture requires a multi-scale approach. Proceedings of the Royal Society B, 281 20141358. http://dx.doi.org/10.1098/rspb.2014.1358.CrossRefGoogle ScholarPubMed
Gonthier, D. J., Ennis, K. K., Philpott, S. M., Vandermeer, J. and Perfecto, I. (2013). Ants defend coffee from berry borer colonization. BioControl, 58, 815820.Google Scholar
Gove, A., Majer, J. D. and Rico-Gray, V. 2009. Ant assemblages in isolated trees are more sensitive to species placement than their woodland counterparts. Basic and Applied Ecology, 10, 187195.CrossRefGoogle Scholar
Griffith, D. M. (2004). Succession of tropical rain forest along a gradient of agricultural intensification: pattens,mechanisms and implications for conservation. PhD thesis, Ann Arbor, MI: University of Michigan, Department of Ecology and Evolutionary Biology.Google Scholar
Gutiérrez-Vélez, V. H., DeFries, R., Pinedo-Vásquez, M. et al. (2011). High-yield oil palm expansion spares land at the expense of forests in the Peruvian Amazon. Environmental Research Letters, 6, 044029. doi:10.1088/1748–9326/6/4/044029.Google Scholar
Guzmán, L., Calvache Guerrero, H., Aldana la Torre, J. and Méndez, A. (1997). Manejo de Leptopharsa gibbicarina Froeschner (Hemiptera: Tingidae) con la hormiga Crematogaster sp. en una plantación de palma de aceite. Palmas, 18, 1926.Google Scholar
Henao, H. (2008). Análisis de la actividad depredadora por hormigas en cafetales con y sin sombra de árboles de Cauca y Valle. MScTesis. Cali, Colombia: Universidad del Valle, Facultad de Ciencias, Departamento de Biología.Google Scholar
Henao-Gallego, N., Escobar-Ramírez, S., Calle, Z., Montoya-Lerma, J. and Armbrecht, I. (2012). An artificial aril designed to induce seed hauling by ants for ecological rehabilitation purposes. Restoration Ecology, 20, 555560.Google Scholar
Hernández, C. P., Martínez, Y. P., Insuasty, O. et al. (2002). Efecto del control de malezas y la fertilización nitrogenada sobre la población de hormiga loca Paratrechina fulva (Hymenoptera: Formicidae). Revista Colombiana de Entomología, 28, 8390.Google Scholar
Horvitz, C. C. and Beattie, A. J. (1980). Ant dispersal of Calathea (Marantaceae) seeds by carnivorous ponerines (Formicidae) in a tropical rain forest. American Journal of Botany, 67, 321326.CrossRefGoogle Scholar
Hsieh, H. Y., Liere, H., Soto, E. J. and Perfecto, I. (2012). Cascading trait-mediated interactions induced by ant pheromones. Ecology and Evolution, 2, 21812191.CrossRefGoogle ScholarPubMed
Huang, H. T. and Yang, P. (1987). The ancient cultured citrus ant. BioScience, 37, 665671.Google Scholar
Hurtado, A., Escobar, S., Torres, A. M. and Armbrecht, I. (2012). Explorando el papel de la hormiga generalista Solenopsis geminata (Formicidae: Myrmicinae) en la germinación de semillas de Senna spectabilis (Fabaceae: Caesalpinioideae). Caldasia, 34, 127137.Google Scholar
Jiménez-Soto, E., Cruz-Rodríguez, J. A., Vandermeer, J. and Perfecto, I. (2013). Hypothenemus hampei (Coleoptera: Curculionidae) and its interactions with Azteca instabilis and Pheidole synanthropica (Hymenoptera: Formicidae) in a shade coffee agroecosystem. Environmental Entomology, 42, 915924.Google Scholar
Lange, D. and Del-Claro, K. (2014). Ant-plant interaction in a tropical savanna: may the network structure vary over time and influence on the outcomes of associations? Plos One, 9, e105574.Google Scholar
Larsen, A. and Philpott, S. M. (2010). Twig-nesting ants: the hidden predators of the coffee berry borer in Chiapas, Mexico. Biotropica, 42, 342347.Google Scholar
Laurance, W. F., Sayer, J. and Cassman, K. G. (2014). Agricultural expasion and its impact on tropical nature. Trends in Ecology and Evolution, 29, 107116.Google Scholar
Leston, D. (1978). A Neotropical ant mosaic. Annals of the Entomological Society of America, 71, 649653.Google Scholar
Liere, H. and Perfecto, I. (2008). Cheating on a mutualism: indirect benefits of ant attendance to a coccidophagous coccinellid. Environmental Entomology, 37, 143149.CrossRefGoogle ScholarPubMed
Livingston, G. F., White, A. M. and Kratz, C. J. (2008). Indirect interactions between ant-tended hemipterans, a dominant ant Azteca instabilis (Hymenoptera: Formicidae), and shade trees in a tropical agroecosystem. Environmental Entomology, 37, 734740.CrossRefGoogle Scholar
Majer, J. D. (1976). The influence of ants and ant manipulation on the cocoa farm fauna. Journal of Applied Ecology, 13, 157175.Google Scholar
Majer, J. D. 1993. Comparison of the arboreal ant mosaic in Ghana, Brazil, Papua New Guinea, and Australia: Its structure and influence on arthropod diversity. In Hymenoptera and Biodiversity, ed. J. LaSalle and I. D. Gauld. Wallingford, UK: CAB International, pp. 115141.Google Scholar
Majer, J. D. and Delabie, J. H. C. (1999). Impact of tree isolation on arboreal and ground ant communities in cleared pasture in the Atlantic rain forest region of Bahia, Brazil. Insectes Sociaux, 46, 281290.CrossRefGoogle Scholar
Marin, L., Jackson, D. and Perfecto, I. (2015). A positive association between ants and spiders and potential mechanisms driving them. Oikos, 124, 10781088.Google Scholar
Mathis, K. A., Philpott, S. M. and Moreira, R. F. (2011). Parasite lost: chemical and visual cues used by Pseudacteon in search of Azteca instabilis. Journal of Insect Behavior, 24, 186199.CrossRefGoogle ScholarPubMed
Mera-Velasco, Y. A., Gallego-Ropero, M. C. and Armbrecht, I. (2010). Asociaciones entre hormigas y otros insectos en follaje de cafetales de sol y sombra, Cauca Colombia. Revista Colombiana de Entomología, 36, 116126.CrossRefGoogle Scholar
Morris, J. R., Vandermeer, J. and Perfecto, I. (2015). A keystone ant species provides robust biological control of the coffee berry borer under varying pest densities. PloS one 10, e0142850.Google Scholar
Nestel, D. and Dickschen, F. (1990). Foraging kinetics of ground ant communities in different mexican coffee agroecosystems. Oecologia, 84, 5863.Google Scholar
Perfecto, I. and Armbrecht, I. (2003). The coffee agroecosystem in the Neotropics: combining ecological and economic goals. In Tropical agroecosystems, ed. Vandermeer, J.. Boca Raton, FLA: CRC Press, pp. 159194Google Scholar
Perfecto, I., Rice, R. A., Greenberg, R. and Van der Voort, M. E. (1996). Shade coffee: a disappearing refuge for biodiversity. Bioscience, 46, 598608.Google Scholar
Perfecto, I. and Snelling, R. (1995). Biodiversity and the transformation of a tropical agroecosystem: ants in coffee plantations. Ecological Applications, 5, 10841097.Google Scholar
Perfecto, I. and Vandermeer, J. (2006). The effect of an ant-hemipteran mutualism on the coffee berry borer (Hypothenemus hampei) in southern Mexico. Agriculture, Ecosystems and Environment, 117, 218221.Google Scholar
Perfecto, I. and Vandermeer, J. (2015). Coffee agroecology, New York: Earthscan.Google Scholar
Perfecto, I., Vandermeer, J. and Philpott, S. M. (2014). Complex ecological interactions in the coffee agroecosystem. Annual Review of Ecology, Evolution, and Systematics, 45, 137158.CrossRefGoogle Scholar
Philpott, S. M. (2006). Ant patchiness: a spatially quantitative test in coffee agroecosystems. Naturwissenschaften, 93, 386392.Google Scholar
Philpott, S. M. and Armbrecht, I. (2006). Biodiversity in tropical agroforests and the ecological role of ants and ant diversity in predatory function. Ecological Entomology, 31, 369377.Google Scholar
Philpott, S. M., Pardee, G. L. and Gonthier, D. J. (2012). Cryptic biodiversity effects: importance of functional redundancy revealed through addition of food web complexity. Ecology, 93, 9921001.Google Scholar
Philpott, S. M., Perfecto, I. and Vandermeer, J. (2008). Behavioral diversity of predatory arboreal ants in coffee agroecosystems. Environmental Entomology, 37, 181191.Google Scholar
Posada-Flórez, F. J., Vélez-Hoyos, M. and Zenner de Polanía, I. (2009). Hormigas: enemigos naturales de la broca del café,. Chinchiná, Colombia: Universidad de Ciencias Aplicadas y Ambientales.Google Scholar
Pringle, E. G., Dirzo, R. and Gordon, D. H. (2011). Indirect benefits of symbiotic coccoids for an ant-defended myrmecophytic tree. Ecology, 92, 3746.Google Scholar
Ramírez, M., Chará, J., Pardo-Lorcano, L. C. et al. (2012). Biodiversidad de hormigas hipogeas (Hymenoptera: Formicidae) en agroecosistemas del Cerrito, Valle del Cauca. Livestock Research for Rural Development, 241, 118.Google Scholar
Ramírez, M., Herrera, J. and Armbrecht, I. (2010). Hormigas que depredan en potreros y cafetales colombianos: ¿bajan de los árboles? Revista Colombiana de Entomología, 36, 106115.Google Scholar
Rico-Gray, V. and Oliveira, P. S. (2007). The ecology and evolution of ant-plant interactions, Chicago: University of chicago Press.Google Scholar
Risch, S. J. and Carroll, R. (1982). Effect of a keystone predaceous ant, Solenopsis geminata on arthropods in a tropical agroecosystem. Ecology, 63, 19791983.Google Scholar
Rivera, L. F., Armbrecht, I. and Calle, Z. (2013). Silvopastoral systems and ant diversity conservation in a cattle-dominated landscape of the Colombian Andes. Agriculture, Ecosystems and Environment, 181, 188194.CrossRefGoogle Scholar
Santamaría, C., Armbrecht, I. and Lachaud, J. P. (2009). Nest distribution and food preferences of Ectatomma ruidum (Hymenoptera: Formicidae) in shaded and open cattle pastures of Colombia. Sociobiology, 53, 517541.Google Scholar
Silva, E. N. and Perfecto, I. (2013). Coexistence of aphid predators in cacao plants: does ant-aphid mutualism play a role? Sociobiology, 60, 259265.Google Scholar
Sinisterra, M. R., Gallego-Ropero, M. C. and Armbrecht, I. (2016). Hormigas asociadas a nectarios extraflorales de árboles de dos especies de Inga en cafetales de Cauca, Colombia. Acta Agronomica, 65, 915.Google Scholar
Trible, W. and Carroll, R. (2014). Manipulating tropical fire ants to reduce the coffee berry borer. Ecological Entomology, 39, 603609.CrossRefGoogle Scholar
Urrutia-Escobar, X. and Armbrecht, I. (2013). Effect of two agroecological management strategies on ant (Hymenoptera: Formicidae) diversity on coffee plantations in Southwestern Colombia. Environmental Entomology, 42, 194203.Google Scholar
Utsumi, S., Kishida, O. and Ohgushi, T. (2010). Trait-mediated indirect interactions in ecological communities. Population ecology, 52, 457459.CrossRefGoogle Scholar
Vásquez Moreno, L. L., Matienzo Brito, Y., Alfonso Simonetti, J., Moreno Rodríguez, D. and Alvarez Nuñez, A. (2009). Diversidad de especies de hormigas (Hymenoptera: Formicidae) en cafetales afectados por Hypothenemus hampei Ferrari (Coleoptera: Curculionidae: Scolytinae), Fitosanidad, 13, 163168.Google Scholar
Ward, P. S. (2007). Phylogeny, classification and species-level taxonomy of ants (Hymenoptera: Formicidae). Zootaxa, 1668, 549563.Google Scholar
Way, M. J. and Khoo, K. C. (1992). Role of ants in pest management. Annual Review of Entomology, 37, 479503.Google Scholar
Werner, E. E. and Peacor, S. D. (2003). A review of trait-mediated indirect interactions in ecological communities. Ecology, 84, 10831100.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×