Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-08T14:56:32.220Z Has data issue: false hasContentIssue false

1 - Trophoblast cell fate specification

Published online by Cambridge University Press:  07 August 2009

James Cross
Affiliation:
University of Calgary, Canada
Ashley Moffett
Affiliation:
University of Cambridge
Charlie Loke
Affiliation:
University of Cambridge
Anne McLaren
Affiliation:
Cancer Research, UK
Get access

Summary

The trophoblast cell lineage is the first cell type to be specified during mammalian development – as the trophectoderm layer in the blastocyst – and is fated to form the epithelial cell compartment of the placenta (Cross et al. 1994, Rossant 1995). Trophoblast cells can be derived from blastocysts, at least in mice, that show properties expected of trophoblast stem (TS) cells in that they can differentiate into a range of differentiated trophoblast cell subtypes both in vitro and in vivo (Tanaka et al. 1998, Hughes et al. 2004). The trophoblast cell lineage is relatively simple in mice, in that TS cells differentiate into only four major differentiated cell types: trophoblast giant cells, spongiotrophoblast, glycogen trophoblast cells and syncytiotrophoblast (Cross et al. 2003) (Fig 1.1). Considerable progress has been made in the last few years in defining the molecular mechanisms that regulate the maintenance of the stem cell fate as well as the formation of the alternative differentiated cell types. This review focuses on the key transcription factors that specify trophoblast cell fates and the emerging evidence as to how signalling pathways interact with these transcription factors ultimately to regulate alternative cell fate decisions.

Trophoblast stem cells

Trophoblast stem cell lines can be derived from mice by culturing blastocysts or dissected extraembryonic ectoderm (chorionic trophoblast) in the presence of fibroblast growth factor (FGF)4 and feeder-cell conditioned medium (Tanaka et al. 1998).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamson, S. L., Lu, Y., Whiteley, K. J.et al. (2002). Interactions between trophoblast cells and the maternal and fetal circulation in the mouse placenta. Dev. Biol., 250, 358–73.CrossRefGoogle ScholarPubMed
Anson-Cartwright, L., Dawson, K., Holmyard, D.et al. (2000). The glial cells missing-1 protein is essential for branching morphogenesis in the chorioallantoic placenta. Nat. Genet., 25, 311–14.CrossRefGoogle ScholarPubMed
Arman, E., Haffner-Krausz, R., Chen, Y., Heath, J. K. & Lonai, P. (1998). Targeted disruption of fibroblast growth factor (FGF) receptor 2 suggests a role for FGF signaling in pregastrulation mammalian development. Proc. Natl. Acad. Sci. U.S.A., 95, 5082–7.CrossRefGoogle ScholarPubMed
Auman, H. J., Nottoli, T., Lakiza, O.et al. (2002). Transcription factor AP-2gamma is essential in the extra-embryonic lineages for early postimplantation development. Development, 129, 2733–47.Google ScholarPubMed
Baczyk, D., Satkunaratnam, A., Nait-Oumesmar, B.et al. (2004). Complex patterns of GCM1 mRNA and protein in villous and extravillous trophoblast cells of the human placenta. Placenta, 25, 553–9.CrossRefGoogle ScholarPubMed
Basyuk, E., Cross, J. C., Corbin, J.et al. (1999). The murine Gcm1 gene is expressed in a subset of placental trophoblast cells. Dev. Dyn., 214, 303–113.0.CO;2-B>CrossRefGoogle Scholar
Chawengsaksophak, K., James, R., Hammond, V. E., Kontgen, F. & Beck, F. (1997). Homeosis and intestinal tumors in Cdx2 mutant mice. Nature, 386, 84–7.CrossRefGoogle ScholarPubMed
Cross, J. C. (1996). Trophoblast function in normal and preeclamptic pregnancy. Fetal Maternal Med. Rev., 8, 57–66.CrossRefGoogle Scholar
Cross, J. C. (2000). Genetic insights into trophoblast differentiation and placental morphogenesis. Semin. Cell. Dev. Biol., 11, 105–13.CrossRefGoogle ScholarPubMed
Cross, J. C., Werb, Z. & Fisher, S. J. (1994). Implantation and the placenta: key pieces of the development puzzle. Science, 266, 1508–18.CrossRefGoogle ScholarPubMed
Cross, J. C., Flannery, M. L., Blanar, M. A.et al. (1995). Hxt encodes a basic helix-loop-helix transcription factor that regulates trophoblast cell development. Development, 121, 2513–23.Google ScholarPubMed
Cross, J. C., Hemberger, M., Lu, Y.et al. (2002). Trophoblast functions, angiogenesis and remodeling of the maternal vasculature in the placenta. Mol. Cell. Endocrinol., 187, 207–12.CrossRefGoogle ScholarPubMed
Cross, J. C., Baczyk, D., Dobric, N.et al. (2003). Genes, development and evolution of the placenta. Placenta, 24, 123–30.CrossRefGoogle ScholarPubMed
Feldman, B., Poueymirou, W., Papaioannou, V. E., DeChaira, T. M. & Goldfarb, M. (1995). Requirement of FGF-4 for postimplantation mouse development. Science, 267, 246–9.CrossRefGoogle ScholarPubMed
Goldin, S. N. & Papaioannou, V. E. (2003). Paracrine action of FGF4 during periimplantation development maintains trophectoderm and primitive endoderm. Genesis, 36, 40–7.CrossRefGoogle ScholarPubMed
Guillemot, F., Nagy, A., Auerbach, A., Rossant, J. & Joyner, A. L. (1994). Essential role of Mash-2 in extra-embryonic development. Nature, 371, 333–6.CrossRefGoogle Scholar
Hemberger, M., Himmelbauer, H., Ruschmann, J., Zeitz, C. & Fundele, R. (2000). cDNA subtraction cloning reveals novel genes whose temporal and spatial expression indicates association with trophoblast invasion. Dev. Biol., 222, 158–69.CrossRefGoogle ScholarPubMed
Hughes, M., Dobric, N., Scott, I.et al. (2004). The Hand1, Stra13 and Gcm1 transcription factors override FGF signaling to promote terminal differentiation of trophoblast stem cells. Dev. Biol., 271, 27–38.CrossRefGoogle ScholarPubMed
Hunter, P. J., Swanson, B. J., Haendel, M. A., Lyons, G. E. & Cross, J. C. (1999). Mrj encodes a DnaJ-related co-chaperone that is essential for murine placental development. Development, 126, 1247–58.Google ScholarPubMed
Janatpour, M. J., Utset, M. F., Cross, J. C.et al. (1999). A repertoire of differentially expressed transcription factors that offers insight into mechanisms of human cytotrophoblast differentiation. Dev. Genet., 25, 146–57.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Knofler, M., Meinhardt, G., Vasicek, R., Husslein, P. & Egarter, C. (1998). Molecular cloning of the human Hand1 gene/cDNA and its tissue-restricted expression in cytotrophoblastic cells and heart. Gene, 224, 77–86.CrossRefGoogle ScholarPubMed
Knofler, M., Meinhardt, G., Bauer, S.et al. (2002). Human Hand1 basic helix-loop-helix (bHLH) protein: extra-embryonic expression pattern, interaction partners and identification of its transcriptional repressor domains. Biochem. J., 361, 641–51.CrossRefGoogle ScholarPubMed
Kraut, N., Snider, L., Chen, C., Tapscott, S. J. & Groudine, M. (1998). Requirement of the mouse I-mfa gene for placental development and skeletal patterning. EMBO J., 17, 6276–88.CrossRefGoogle ScholarPubMed
Linzer, D. I. & Fisher, S. J. (1999). The placenta and the prolactin family of hormones: regulation of the physiology of pregnancy. Mol. Endocrinol., 13, 837–40.CrossRefGoogle ScholarPubMed
Lopez, M. F., Dikkes, P., Zurakowski, D. & Villa-Komaroff, L. (1996). Insulin-like growth factor II affects the appearance and glycogen content of glycogen cells in the murine placenta. Endocrinology, 137, 2100–8.CrossRefGoogle ScholarPubMed
Luo, J., Sladek, R. & Bader, J-A. (1997). Placental abnormalities in mouse embryos lacking the orphan nuclear receptor ERR-b. Nature, 388, 778–82.CrossRefGoogle Scholar
MacAuley, A., Cross, J. C. & Werb, Z. (1998). Reprogramming the cell cycle for endoreduplication in rodent trophoblast cells. Mol. Biol. Cell, 9, 795–807.CrossRefGoogle ScholarPubMed
Mi, S., Lee, X., Li, X.et al. (2000). Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature, 403, 785–9.CrossRefGoogle ScholarPubMed
Nakayama, H., Scott, I. C. & Cross, J. C. (1998). The transition to endoreduplication in trophoblast giant cells is regulated by the mSNA zinc-finger transcription factor. Dev. Biol., 199, 150–63.CrossRefGoogle ScholarPubMed
Pijnenborg, R. (1996). The placental bed. Hypertens. Pregnancy, 15, 7–23.CrossRefGoogle Scholar
Pijnenborg, R., Robertson, W. B., Brosens, I. & Dixon, G. (1981). Review article: trophoblast invasion and the establishment of haemochorial placentation in man and laboratory animals. Placenta, 2, 71–91.CrossRefGoogle ScholarPubMed
Riley, P., Anson-Cartwright, L. & Cross, J. C. (1998). The Hand1 bHLH transcription factor is essential for placentation and cardiac morphogenesis. Nat. Genet., 18, 271–5.CrossRefGoogle ScholarPubMed
Rossant, J. (1995). Development of the extra-embryonic lineages. Semin. Dev. Biol., 6, 237–47.CrossRefGoogle Scholar
Russ, A. P., Wattler, S., Colledge, W. H.et al. (2000). Eomesodermin is required for mouse trophoblast development and mesoderm formation. Nature, 404, 95–9.CrossRefGoogle ScholarPubMed
Scott, I. C., Anson-Cartwright, L., Riley, P., Reda, D. & Cross, J. C. (2000). The Hand1 basic helix-loop-helix transcription factor regulates trophoblast giant cell differentiation via multiple mechanisms. Mol. Cell. Biol., 20, 530–41.CrossRefGoogle ScholarPubMed
Stecca, B., Nait-Oumesmar, B., Kelley, K. A.et al. (2002). Gcm1 expression defines three stages of chorio-allantoic interaction during placental development. Mech. Dev., 115, 27–34.CrossRefGoogle ScholarPubMed
Tanaka, M., Gertsenstein, M., Rossant, J. & Nagy, A. (1997). Mash2 acts cell autonomously in mouse spongiotrophoblast development. Dev. Biol., 190, 55–65.CrossRefGoogle ScholarPubMed
Tanaka, S., Kunath, T., Hadjantonakis, A. K., Nagy, A. & Rossant, J. (1998). Promotion of trophoblast stem cell proliferation by FGF4. Science, 282, 2072–5.CrossRefGoogle ScholarPubMed
Tremblay, G. B., Kunath, T., Bergeron, D.et al. (2001). Diethylstilbestrol regulates trophoblast stem cell differentiation as a ligand of orphan nuclear receptor ERR beta. Genes Dev., 15, 833–8.CrossRefGoogle ScholarPubMed
Yamaguchi, M., Ogren, L., Endo, H., Soares, M. J. & Talamantes, F. (1994). Co-localization of placental lactogen-I, placental lactogen-II, and proliferin in the mouse placenta at midpregnancy. Biol. Reprod., 51, 1188–92.CrossRefGoogle ScholarPubMed
Yan, J., Tanaka, S. & Oda, M. (2001). Retinoic acid promotes differentiation of trophoblast stem cells to a giant cell fate. Dev. Biol., 235, 422–32.CrossRefGoogle ScholarPubMed
Yu, C., Shen, K., Lin, M.et al. (2002). GCMa regulates the syncytin-mediated trophoblastic fusion. J. Biol. Chem., 277, 50062–8.CrossRefGoogle ScholarPubMed
Pijnenborg, R., Robertson, W. B. & Brosens, I. (1974). The arterial migration of trophoblast in the uterus of the golden hamster, Mesocricetus auratus. J. Reprod. Fertil., 40, 269–80.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×