Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-06-09T11:05:57.589Z Has data issue: false hasContentIssue false

4 - Regulation of X-chromosome inactivation in relation to lineage allocation in early mouse embryogenesis

Published online by Cambridge University Press:  07 August 2009

Neil Brockdorff
Affiliation:
MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, UK
Ashley Moffett
Affiliation:
University of Cambridge
Charlie Loke
Affiliation:
University of Cambridge
Anne McLaren
Affiliation:
Cancer Research, UK
Get access

Summary

Overview

The X-inactivation hypothesis, put forward by Mary Lyon in 1961, proposed that in mammals a single X chromosome is selected at random and genetically silenced early in embryogenesis. It was further proposed that the inactive state is stably maintained throughout the lifetime of the animal, and therefore that females are comprised of clonal cell populations derived from progenitor cells with either one X chromosome or the other inactive (Lyon 1961). In the intervening years the Lyon hypothesis has been verified on many levels and there has been significant progress towards understanding the molecular mechanisms governing this process (for a recent review see Heard et al. 1997). Along the way there have been a number of unanticipated surprises in the form of exceptions to the general pattern. Perhaps of most note is the finding that there is preferential inactivation of the paternally derived X chromosome (Xp), as opposed to random inactivation of either X chromosome, in marsupial mammals (Sharman 1971) and in extraembryonic lineages derived from the trophectoderm (TE) and primitive endoderm (PE) of early mouse embryos (Takagi & Sasaki 1975, Takagi et al. 1978).

The quest to understand how the paternally imprinted form of X inactivation is regulated has provided an important impetus that has aided our understanding of the earliest differentiative events in mammalian (eutherian) embryogenesis. Here I will focus on recent studies, which have led to a reappraisal of the classical model for initiation of imprinted X inactivation in mouse embryos.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avner, P. & Heard, E. (2001). X-chromosome inactivation: counting, choice and initiation. Nat. Rev. Genet., 2, 59–67.CrossRefGoogle ScholarPubMed
Brockdorff, N. (2002). X-chromosome inactivation: closing in on proteins that bind Xist RNA. Trends Genet., 18, 352–8.CrossRefGoogle ScholarPubMed
Brown, C. J. & Willard, H. F. (1994). The human X-inactivation centre is not required for maintenance of X-chromosome inactivation. Nature, 368, 154–6.CrossRefGoogle Scholar
Chambers, I., Colby, D., Robertson, M.et al. (2003). Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell, 113, 643–55.CrossRefGoogle ScholarPubMed
Chaumeil, J., Okamoto, I., Guggiari, M. & Heard, E. (2002). Integrated kinetics of X chromosome inactivation in differentiating embryonic stem cells. Cytogenet. Genome Res., 99, 75–84.CrossRefGoogle ScholarPubMed
Clemson, C. M., McNeil, J. A., Willard, H. F. & Lawrence, J. B. (1996). XIST RNA paints the inactive X chromosome at interphase: Evidence for a novel RNA involved in nuclear chromosome structure. J. Cell Biol., 132, 259–75.CrossRefGoogle ScholarPubMed
Clemson, C. M., Chow, J. C., Brown, C. J. & Lawrence, J. B. (1998). Stabilization and localization of Xist RNA are controlled by separate mechanisms and are not sufficient for X inactivation. J. Cell Biol., 142, 13–23.CrossRefGoogle Scholar
Cowell, I. G., Aucott, R., Mahadevaiah, S. K.et al. (2002). Heterochromatin, HP1 and methylation at lysine 9 of histone H3 in animals. Chromosoma, 111, 22–36.CrossRefGoogle ScholarPubMed
Csankovszki, G., Panning, B., Bates, B., Pehrson, J. R. & Jaenisch, R. (1999). Conditional deletion of Xist disrupts histone macroH2A localization but not maintenance of X inactivation. Nat. Genet., 22, 323–4.CrossRefGoogle Scholar
Csankovszki, G., Nagy, A. & Jaenisch, R. (2001). Synergism of Xist RNA, DNA methylation, and histone hypoacetylation in maintaining X chromosome inactivation. J. Cell Biol., 153, 773–84.CrossRefGoogle ScholarPubMed
Daniels, R., Zuccotti, M., Kinis, T., Serhal, P. & Monk, M. (1997). XIST expression in human oocytes and pre-implantation embryos. Am. J. Hum. Genet., 61, 33–9.CrossRefGoogle Scholar
Debrand, E., Chureau, C., Arnaud, D., Avner, P. & Heard, E. (1999). Functional analysis of the DXPas34 locus, a 3′ regulator of Xist expression. Mol. Cell. Biol., 19, 8513–25.CrossRefGoogle ScholarPubMed
Duthie, S. M., Nesterova, T. B., Formstone, E. J.et al. (1999). Xist RNA exhibits a banded localization on the inactive X chromosome and is excluded from autosomal material in cis. Hum. Mol. Genet., 8, 195–204.CrossRefGoogle ScholarPubMed
Eggan, K., Akutsu, H., Hochedlinger, K.et al. (2000). X-chromosome inactivation in cloned mouse embryos. Science, 290, 1578–81.CrossRefGoogle ScholarPubMed
Epstein, C. J., Smith, S., Travis, B. & Tucker, G. (1978). Both X chromosomes function before visible X-chromosome inactivation in female mouse embryos. Nature, 274, 500–2.CrossRefGoogle ScholarPubMed
Fernandez-Capetillo, O., Mahadevaiah, S. K., Celeste, A.et al. (2003). H2AX is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis. Dev. Cell, 4, 497–508.CrossRefGoogle ScholarPubMed
Heard, E., Clerc, P. & Avner, P. (1997). X chromosome inactivation in mammals. Annu. Rev. Genet., 31, 571–610.CrossRefGoogle ScholarPubMed
Heard, E., Rougeulle, C., Arnaud, D.et al. (2001). Methylation of histone H3 at Lys-9 is an early mark on the X chromosome during X inactivation. Cell, 107, 727–38.CrossRefGoogle ScholarPubMed
Hendriksen, P. J., Hoogebrugge, J. W., Themmen, A. P.et al. (1995). Postmeiotic transcription of X and Y chromosomal genes during spermatogenesis in the mouse. Dev. Biol., 170, 730–3.CrossRefGoogle Scholar
Hillman, N., Sherman, M. I. & Graham, C. F. (1972). The effect of spatial arrangements on cell determination during mouse development. J. Embryol. Exp. Morphol., 28, 263–78.Google Scholar
Huynh, K. D. & Lee, J. T. (2003). Inheritance of a pre-inactivated paternal X chromosome in early mouse embryos. Nature, 426, 857–62.CrossRefGoogle ScholarPubMed
Kay, G. F., Penny, G. D., Patel, D.et al. (1993). Expression of Xist during mouse development suggests a role in the initiation of X chromosome inactivation. Cell, 72, 171–82.CrossRefGoogle ScholarPubMed
Keohane, A. M., O'Neill, L. P., Belyaev, N. D., Lavender, J. S. & Turner, B. M. (1996). X inactivation and histone H4 acetylation in embryonic stem cells. Dev. Biol., 180, 618–30.CrossRefGoogle ScholarPubMed
Kratzer, P. G. & Gartler, S. M. (1978). HGPRT activity changes in pre-implantation mouse embryos. Nature, 274, 503–4.CrossRefGoogle Scholar
Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. (2001). Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature, 410, 116–20.CrossRefGoogle ScholarPubMed
Latham, K. E. & Rambhatla, L. (1995). Expression of X-linked genes in androgenetic, gynogenetic, and normal mouse pre-implantation embryos. Dev. Genet., 17, 212–22.CrossRefGoogle Scholar
Lee, J. T. (2000). Disruption of imprinted X inactivation by parent-of-origin effects at Tsix. Cell, 103, 17–27.CrossRefGoogle ScholarPubMed
Lee, J. T. & Lu, N. F. (1999). Targeted mutagenesis of Tsix leads to nonrandom X inactivation. Cell, 99, 47–57.CrossRefGoogle ScholarPubMed
Lee, J. T., Davidow, L. S. & Warshawsky, D. (1999). Tsix, a gene antisense to Xist at the X-inactivation centre. Nat. Genet., 21, 400–4.CrossRefGoogle ScholarPubMed
Looijenga, L. H., Gillis, A. J., Verkerk, A. J., Putten, W. L. & Oosterhuis, J. W. (1999). Heterogeneous X inactivation in trophoblastic cells of human full-term female placentae. Am. J. Hum. Genet., 64, 1445–52.CrossRefGoogle Scholar
Lyon, M. F. (1961). Gene action in the X chromosome of the mouse (Mus musculus L). Nature, 190, 372–3.CrossRefGoogle Scholar
Mak, W., Nesterova, T. B., Napoles, M.et al. (2004). Reactivation of the paternal X chromosome in early mouse embryos. Science, 303, 666–9.CrossRefGoogle ScholarPubMed
McCarrey, J. R., Watson, C., Atencio, J.et al. (2002). X-chromosome inactivation during spermatogenesis is regulated by an Xist/Tsix-independent mechanism in the mouse. Genesis, 34, 257–66.CrossRefGoogle ScholarPubMed
Mermoud, J. E., Costanzi, C., Pehrson, J. R. & Brockdorff, N. (1999). Histone macroH2A1.2 relocates to the inactive X chromosome after initiation and propagation of X-inactivation. J. Cell Biol., 147, 1399–1408.CrossRefGoogle ScholarPubMed
Mitsui, K., Tokuzawa, Y., Itoh, H.et al. (2003). The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell, 113, 631–42.CrossRefGoogle ScholarPubMed
Mohandas, T., Sparkes, R. S. & Shapiro, L. J. (1981). Reactivation of an inactive human X chromosome: evidence for X inactivation by DNA methylation. Science, 211, 393–6.CrossRefGoogle ScholarPubMed
Monesi, V. (1965). Differential rate of ribonucleic acid synthesis in the autosomes and the sex chromosomes during male meiosis in the mouse. Chromosoma, 17, 11–21.CrossRefGoogle ScholarPubMed
Monk, M. & Harper, M. I. (1979). Sequential X chromosome inactivation coupled with cellular differentiation in early mouse embryos. Nature, 281, 311–13.CrossRefGoogle ScholarPubMed
Monk, M. & McLaren, A. (1981). X-chromosome activity in foetal germ cells of the mouse. J. Embryol. Exp. Morphol., 63, 75–84.Google ScholarPubMed
Motzkus, D., Singh, P. B. & Fender, Hoyer S. (1999). M31, a murine homolog of Drosophila HP1, is concentrated in the XY body during spermatogenesis. Cytogenet. Cell Genet., 86, 83–8.CrossRefGoogle ScholarPubMed
Nesterova, T. B., Barton, S. C., Surani, M. A. & Brockdorff, N. (2001). Loss of Xist imprinting in diploid parthenogenetic pre-implantation embryos. Dev. Biol., 235, 343–50.CrossRefGoogle Scholar
Nesterova, T. B., Mermoud, J. E., Hilton, K.et al. (2002). Xist expression and macroH2A1.2 localization in mouse primordial and pluripotent embryonic germ cells. Differentiation, 69, 216–25.CrossRefGoogle Scholar
Okamoto, I., Otte, A. P., Allis, C. D., Reinberg, D. & Heard, E. (2004). Epigenetic dynamics of imprinted X inactivation during early mouse development. Science, 303, 644–9.CrossRefGoogle ScholarPubMed
Ray, P. F., Winston, R. M. & Handyside, A. H. (1997). XIST expression from the maternal X chromosome in human male pre-implantation embryos at the blastocyst stage. Hum. Mol. Genet., 6, 1323–7.CrossRefGoogle Scholar
Sado, T., Wang, Z., Sasaki, H. & Li, E. (2001). Regulation of imprinted X-chromosome inactivation in mice by Tsix. Development, 128, 1275–86.Google ScholarPubMed
Scholer, H. R., Hatzopoulos, A. K., Balling, R., Suzuki, N. & Gruss, P. (1989). A family of octamer-specific proteins present during mouse embryogenesis: evidence for germline-specific expression of an Oct factor. EMBO J., 8, 2543–50.Google ScholarPubMed
Sharman, G. B. (1971). Late DNA replication in the paternally derived X chromosome of female kangaroos. Nature, 230, 231–2.CrossRefGoogle ScholarPubMed
Sheardown, S. A., Duthie, S. M., Johnston, C. M.et al. (1997). Stabilization of Xist RNA mediates initiation of X chromosome inactivation. Cell, 91, 99–107.CrossRefGoogle ScholarPubMed
Silva, J., Mak, W., Zvetkova, I.et al. (2003). Establishment of histone H3 methylation on the inactive X chromosome requires transient recruitment of Eed-Enx1 Polycomb group complexes. Dev. Cell, 4, 481–95.CrossRefGoogle ScholarPubMed
Singer-Sam, J., Chapman, V., LeBon, J. M. & Riggs, A. D. (1992). Parental imprinting studied by allele-specific primer extension after PCR: paternal X chromosome-linked genes are transcribed prior to preferential paternal X chromosome inactivation. Proc. Natl. Acad. Sci. U.S.A., 89, 10469–73.CrossRefGoogle ScholarPubMed
Tada, M., Tada, T., Lefebvre, L., Barton, S. C. & Surani, M. A. (1997). Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. EMBO J., 16, 6510–20.CrossRefGoogle ScholarPubMed
Tada, M., Takahama, Y., Abe, K., Nakatsuji, N. & Tada, T. (2001). Nuclear reprogramming of somatic cells by in vitro hybridisation with ES cells. Curr. Biol., 11, 1553–8.CrossRefGoogle Scholar
Takagi, N. & Sasaki, M. (1975). Preferential inactivation of the paternally derived X chromosome in the extra-embryonic membranes of the mouse. Nature, 256, 640–2.CrossRefGoogle ScholarPubMed
Takagi, N., Wake, N. & Sasaki, M. (1978). Cytologic evidence for preferential inactivation of the paternally derived X chromosome in XX mouse blastocysts. Cytogenet. Cell Genet., 20, 240–8.CrossRefGoogle ScholarPubMed
Turner, J. M., Mahadevaiah, S. K., Elliott, D. J.et al. (2002). Meiotic sex chromosome inactivation in male mice with targeted disruptions of Xist. J. Cell Sci., 115, 4097–105.CrossRefGoogle ScholarPubMed
Wutz, A. & Jaenisch, R. (2000). A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation. Mol. Cell, 5, 695–705.CrossRefGoogle ScholarPubMed
Xue, F., Tian, X. C., Du, F.et al. (2002). Aberrant patterns of X chromosome inactivation in bovine clones. Nat. Genet., 31, 216–20.CrossRefGoogle ScholarPubMed
Eggan, K., Akutsu, H., Hochedlinger, K.et al. (2000). X-chromosome inactivation in cloned mouse embryos. Science, 290, 1578–81.CrossRefGoogle ScholarPubMed
Huynh, K. D. & Lee, J. T. (2003). Inheritance of a pre-inactivated paternal X chromosome in early mouse embryos. Nature, 426, 857–62.CrossRefGoogle ScholarPubMed
Mak, W., Nesterova, T. B., Napoles, M.et al. (2004). Reactivation of the paternal X chromosome in early mouse embryos. Science, 303, 666–9.CrossRefGoogle ScholarPubMed
Monk, M. (1978). Biochemical studies on mammalian X-chromosome activity. In Johnson, M. H., ed., Development in Mammals, vol. 3. Amsterdam: Elsevier, pp. 189–223.Google Scholar
Monk, M. & Harper, M. I. (1978). X-chromosome activity in pre-implantation mouse embryos from XX and XO mothers. J. Embryol. Exp. Morphol., 46, 53–64.Google Scholar
Okamoto, I., Otte, A. P., Allis, C. D., Reinberg, D. & Heard, E. (2004). Epigenetic dynamics of imprinted X inactivation during early mouse development. Science, 303, 644–9.CrossRefGoogle ScholarPubMed
Rossant, J., Chazaud, C. & Yamanaka, Y. (2003). Lineage allocation and asymmetries in the early mouse embryo. Philos. Trans. R. Soc. Lond. B Biol. Sci., 358, 1341–49.CrossRefGoogle ScholarPubMed
Sheardown, S. A., Duthie, S. M., Johnston, C. M.et al. (1997). Stabilization of Xist RNA mediates initiation of X chromosome inactivation. Cell, 91, 99–107.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×