Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-19T22:36:43.848Z Has data issue: false hasContentIssue false

11 - Neuropathology of dementia

Published online by Cambridge University Press:  31 July 2009

Bruce L. Miller
Affiliation:
University of California, San Francisco
Bradley F. Boeve
Affiliation:
Mayo Foundation, Minnesota
Get access

Summary

Introduction

Age-related neurodegenerative diseases represent an increasing public health crisis. In the USA, individuals 85 years of age or older are the fastest growing segment of society, projected to exceed 10 million citizens before 2050. The risk of developing Alzheimer's disease (AD) doubles every five years after age 65, suggesting that the prevalence of dementia will escalate dramatically in the next 40 years.

Major advances in neuroimaging, genetics, molecular biology and neuropathology have begun to refine our understanding of the dementias, providing hope for new therapies. Structural and functional imaging studies now map dementia-related regional and network-level dysfunction in unprecedented detail, and transgenic animals provide testable disease models, bringing new insights into dementia pathogenesis. Genetic studies have identified numerous disease-causing mutations and provide a foothold for understanding the molecular pathology of dementia. Conversely, careful separation of patients with dementia into pathologically homogeneous groupings has accelerated the search for new causative mutations. Accurate prediction of pathology will become even more critical when molecule-specific treatments emerge.

With new discoveries and shifts in opinion, diagnostic frameworks for dementia have evolved rapidly. Formal clinical and pathological diagnostic research criteria for the dementias continue to be revised, with the goal of optimizing clinical–pathological correlations. However, even among patients seen at dementia referral centers, clinical and pathological diagnoses remain discordant in a significant minority of patients. Necessarily, neuropathology remains the gold standard for dementia diagnosis.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hebert, , Scherr, PA, Bienias, JL, Bennett, DA, Evans, DA. Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol 2003;60(8):1119–22.CrossRefGoogle ScholarPubMed
Bachman, DL, Wolf, PA, Linn, RTet al. Incidence of dementia and probable Alzheimer's disease in a general population: the Framingham Study. Neurology 1993;43(3 Pt 1):515–19.CrossRefGoogle Scholar
Knopman, DS, Boeve, BF, Parisi, JEet al. Antemortem diagnosis of frontotemporal lobar degeneration. Ann Neurol 2005;57(4):480–8.CrossRefGoogle ScholarPubMed
Forman, MS, Farmer, J, Johnson, JKet al. Frontotemporal dementia: clinicopathological correlations. Ann Neurol 2006;59(6):952–62.CrossRefGoogle Scholar
Brun, A, Gustafson, L. Limbic lobe involvement in presenile dementia. Arch Psychiatr Nervenkr 1978;226(2):79–93.CrossRefGoogle ScholarPubMed
Brun, A, Liu, X, Erikson, C. Synapse loss and gliosis in the molecular layer of the cerebral cortex in Alzheimer's disease and in frontal lobe degeneration. Neurodegeneration 1995;4(2):171–7.CrossRefGoogle ScholarPubMed
Mesulam, MM. Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann Neurol 1990;28(5):597–613.CrossRefGoogle Scholar
Ritchie, K, Lovestone, S. The dementias. Lancet 2002;360(9347):1759–66.CrossRefGoogle ScholarPubMed
Kukull, WA, Higdon, R, Bowen, JDet al. Dementia and Alzheimer disease incidence: a prospective cohort study. Arch Neurol 2002;59(11):1737–46.CrossRefGoogle ScholarPubMed
Braak, H, Braak, E. Staging of Alzheimer's disease-related neurofibrillary changes. Neurobiol Aging 1995;16(3):271–284.CrossRefGoogle ScholarPubMed
Hyman, BT, Damasio, AR. Hierarchical vulnerability of the entorhinal cortex and the hippocampal formation to Alzheimer neuropathological changes: a semiquantitative study. Neurology 1990;40:403.Google Scholar
Hyman, BT, Damasio, AR, Hoesen, GW, Barnes, CL. Alzheimer's disease: cell-specific pathology isolates the hippocampal formation. Science 1984;298:83–95.Google Scholar
Reiman, EM, Caselli, RJ, Yun, LS, Chen, Ket al. Preclinical evidence of Alzheimer's disease in persons homozygous for the epsilon 4 allele for apolipoprotein E. N Engl J Med 1996;334(12):752–8.CrossRefGoogle ScholarPubMed
Gorno-Tempini, ML, Dronkers, NF, Rankin, KPet al. Cognition and anatomy in three variants of primary progressive aphasia. Ann Neurol 2004;55(3):335–46.CrossRefGoogle ScholarPubMed
Galton, CJ, Patterson, K, Xuereb, JH, Hodges, JR. Atypical and typical presentations of Alzheimer's disease: a clinical, neuropsychological, neuroimaging and pathological study of 13 cases. Brain 2000;123 Pt 3:484–98.CrossRefGoogle ScholarPubMed
Zakzanis, KK, Boulos, MI. Posterior cortical atrophy. Neurologist 2001;7(6):341–9.CrossRefGoogle ScholarPubMed
Johnson, J, Head, E, Kim, Ret al. Clinical and pathological evidence for a frontal variant of Alzheimer disease. Arch Neurol 1999;56(10):1233–9.CrossRefGoogle ScholarPubMed
Brun, A, Gustafson, L. Distribution of cerebral degeneration in Alzheimer's disease. A clinico-pathological study. Arch Psychiatr Nervenkr 1976;223(1):15–33.CrossRefGoogle ScholarPubMed
Alzheimer, A. Uber einen eigenartigen, schweren Erkrankungsprozess der Hirnrinde. Neurol Zbl 1906;25:1134.Google Scholar
Dickson, DW. The pathogenesis of senile plaques. J Neuropathol Exp Neurol 1997;56(4):321–39.CrossRefGoogle ScholarPubMed
Goedert, M. Tau protein and the neurofibrillary pathology of Alzheimer's disease. Trends Neurosci 1993;16(11):460–5.CrossRefGoogle ScholarPubMed
Arnold, SE, Hyman, BT, Flory, J, Damasio, AR, Hoesen, GW. The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients in Alzheimer's disease. Cerebral Cortex 1991;1(1):103–16.CrossRefGoogle ScholarPubMed
Arriagada, PV, Growdon, JH, Hedley-Whyte, ET, Hyman, BT. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease. Neurology 1992;42(3 Pt 1):631–9.CrossRefGoogle Scholar
Ball, MJ. Neuronal loss, neurofibrillary tangles and granulovacuolar degeneration in the hippocampus with ageing and dementia. A quantitative study. Acta Neuropathol (Berl) 1977;37(2):111–8.CrossRefGoogle ScholarPubMed
Vinters, HV. Cerebral amyloid angiopathy. A critical review. Stroke 1987;18(2):311–24.Google ScholarPubMed
Gibson, PH, Tomlinson, BE. Numbers of Hirano bodies in the hippocampus of normal and demented people with Alzheimer's disease. J Neurol Sci 1977;33(1–2):199–206.CrossRefGoogle ScholarPubMed
Itagaki, S, McGeer, PL, Akiyama, H, Zhu, S, Selkoe, D.Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease. J Neuroimmunol 1989;24(3):173–82.CrossRefGoogle ScholarPubMed
Mirra, S, Heyman, A, McKeel, Det al. The consortium to establish a registry for Alzheimer's disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer's disease. Neurology 1991;41(4):479–486.CrossRefGoogle Scholar
Braak, H, Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991;82(4):239–59.CrossRefGoogle ScholarPubMed
Hyman, BT, Trojanowski, JQ. Consensus recommendations for the postmortem diagnosis of Alzheimer disease from the National Institute on Aging and the Reagan Institute Working Group on diagnostic criteria for the neuropathological assessment of Alzheimer disease. J Neuropathol Exp Neurol 1997;56(10):1095–7.CrossRefGoogle Scholar
Bigio, EH, Hynan, LS, Sontag, E, Satumtira, S, White, CL.Synapse loss is greater in presenile than senile onset Alzheimer disease: implications for the cognitive reserve hypothesis. Neuropathol Appl Neurobiol 2002;28(3):218–27.CrossRefGoogle ScholarPubMed
Marshall, GA, Fairbanks, , Tekin, S, Vinters, HV, Cummings, JL. Early-onset Alzheimer's disease is associated with greater pathologic burden. J Geriatr Psychiatry Neurol 2007;20(1):29–33.CrossRefGoogle ScholarPubMed
Kim, EJ, Cho, SS, Jeong, Yet al. Glucose metabolism in early onset versus late onset Alzheimer's disease: an SPM analysis of 120 patients. Brain 2005;128(Pt 8):1790–801.CrossRefGoogle ScholarPubMed
Frisoni, GB, Pievani, M, Testa, Cet al. The topography of grey matter involvement in early and late onset Alzheimer's disease. Brain 2007;130(Pt 3):720–30.CrossRefGoogle ScholarPubMed
Hardy, JA, Higgins, GA. Alzheimer's disease: the amyloid cascade hypothesis. Science 1992;256(5054):184–5.CrossRefGoogle ScholarPubMed
Goedert, M, Spillantini, MG, Cairns, NJ, Crowther, RA. Tau proteins of Alzheimer paired helical filaments: abnormal phosphorylation of all six brain isoforms. Neuron 1992;8(1):159–68.CrossRefGoogle ScholarPubMed
Farrer, , Myers, RH, Cupples, et al. Transmission and age-at-onset patterns in familial Alzheimer's disease: evidence for heterogeneity. Neurology 1990;40(3 Pt 1):395–403.CrossRefGoogle ScholarPubMed
St George-Hyslop, PH, Tanzi, RE, Polinsky, RJ. The Genetic Defect Causing Familial Alzheimer's Disease Maps on Chromosome 21. Science 1987;235:885–90.CrossRefGoogle ScholarPubMed
Schellenberg, GD, Bird, TD, Wijsman, EMet al. Genetic linkage evidence for a familial Alzheimer's disease locus on chromosome 14. Science 1992;258:68–671.CrossRefGoogle ScholarPubMed
Levy-Lahad, E, Wasco, W, Poorkaj, Pet al. Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science 1995;269(5226):973–7.CrossRefGoogle ScholarPubMed
Schmitt, FA, Davis, DG, Wekstein, DRet al. “Preclinical” AD revisited: neuropathology of cognitively normal older adults. Neurology 2000;55(3):370–6.CrossRefGoogle ScholarPubMed
Ratnavalli, E, Brayne, C, Dawson, K, Hodges, JR. The prevalence of frontotemporal dementia. Neurology 2002;58(11):1615–21.CrossRefGoogle ScholarPubMed
Knopman, DS, Petersen, RC, Edland, SD, Cha, RH, Rocca, WA. The incidence of frontotemporal lobar degeneration in Rochester, Minnesota, 1990 through 1994. Neurology 2004;62(3):506–8.CrossRefGoogle ScholarPubMed
Neary, D, Snowden, JS, Gustafson, Let al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 1998;51(6):1546–54.CrossRefGoogle ScholarPubMed
Schroeter, ML, Raczka, K, Neumann, J, Cramon, DY. Neural networks in frontotemporal dementia: a meta-analysis. Neurobiol Aging 2006;29(3):418–26.CrossRefGoogle ScholarPubMed
Seeley, WW, Crawford, R, Rascovsky, Ket al. Frontal paralimbic network atrophy in very mild behavioral variant frontotemporal dementia. Arch Neurol 2008;65(2):249–55.CrossRefGoogle ScholarPubMed
Perry, RJ, Graham, A, Williams, Get al. Patterns of frontal lobe atrophy in frontotemporal dementia: a volumetric MRI study. Dement Geriatr Cogn Disord 2006;22(4):278–87.CrossRefGoogle ScholarPubMed
Broe, M, Hodges, JR, Schofield, Eet al. Staging disease severity in pathologically confirmed cases of frontotemporal dementia. Neurology 2003;60(6):1005–11.CrossRefGoogle ScholarPubMed
Hodges, JR, Patterson, K, Oxbury, S, Funnell, E. Semantic dementia. Progressive fluent aphasia with temporal lobe atrophy. Brain 1992;115 (Pt 6):1783–806.CrossRefGoogle ScholarPubMed
Snowden, J. Semantic dementia. 2nd edition ed. New York: Oxford University Press; 2000.Google Scholar
Seeley, WW, Bauer, AM, Miller, BLet al. The natural history of temporal variant frontotemporal dementia. Neurology 2005;64(8):1384–90.CrossRefGoogle ScholarPubMed
Thompson, SA, Patterson, K, Hodges, JR. Left/right asymmetry of atrophy in semantic dementia: behavioral–cognitive implications. Neurology 2003;61(9):1196–203.CrossRefGoogle ScholarPubMed
Neary, D, Snowden, JS, Mann, DMet al. Frontal lobe dementia and motor neuron disease. J Neurol Neurosurg Psychiatry 1990;53(1):23–32.CrossRefGoogle ScholarPubMed
Munoz, DG, Dickson, DW, Bergeron, Cet al. The neuropathology and biochemistry of frontotemporal dementia. Ann Neurol 2003;54(Suppl 5):S24–8.CrossRefGoogle ScholarPubMed
Mackenzie, IR, Neumann, M, Bigio, EHet al. Nomenclature for neuropathologic subtypes of frontotemporal lobar degeneration: consensus recommendations. Acta Neuropathol 2009;117(1):15–8.CrossRefGoogle ScholarPubMed
Forman, MS, Lee, VM, Trojanowski, JQ. New insights into genetic and molecular mechanisms of brain degeneration in tauopathies. J Chem Neuroanat 2000;20(3–4):225–44.CrossRefGoogle ScholarPubMed
Bigio, EH, Lipton, AM, Yen, SHet al. Frontal lobe dementia with novel tauopathy: sporadic multiple system tauopathy with dementia. J Neuropathol Exp Neurol 2001;60(4):328–41.CrossRefGoogle ScholarPubMed
Dickson, DW. Pick's disease: a modern approach. Brain Pathol 1998;8(2):339–54.CrossRefGoogle ScholarPubMed
Probst, A, Tolnay, M, Langui, D, Goedert, M, Spillantini, MG. Pick's disease: hyperphosphorylated tau protein segregates to the somatoaxonal compartment. Acta Neuropathol (Berl) 1996;92(6):588–96.CrossRefGoogle ScholarPubMed
Feany, MB, Mattiace, , Dickson, DW. Neuropathologic overlap of progressive supranuclear palsy, Pick's disease and corticobasal degeneration. J Neuropathol Exp Neurol 1996;55(1):53–67.CrossRefGoogle ScholarPubMed
Wilhelmsen, K, Lynch, T, Pavlou, Eet al. Localization of disinhibition–dementia–parkinsonism–amyotrophy complex to 17q21-22. Am J Hum Genet 1994;6:1159–65.Google Scholar
Hutton, M, Lendon, CL, Rizzu, Pet al. Association of missense and 5'-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 1998;393(6686):702–5.CrossRefGoogle Scholar
Foster, NL, Wilhelmsen, K, Sima, AAet al. Frontotemporal dementia and parkinsonism linked to chromosome 17: a consensus conference. Conference Participants. Annals of Neurology 1997;41(6):706–15.CrossRefGoogle ScholarPubMed
Bird, TD, Wijsman, EM, Nochlin, Det al. Chromosome 17 and hereditary dementia: linkage studies in three non-Alzheimer families and kindreds with late-onset FAD. Neurology 1997;48(4):949–54.CrossRefGoogle ScholarPubMed
Heutink, P, Stevens, M, Rizzu, Pet al. Hereditary frontotemporal dementia is linked to chromosome 17q21-q22: a genetic and clinicopathological study of three Dutch families. Ann Neurol 1997;41(2):150–9.CrossRefGoogle ScholarPubMed
Lipton, AM, White, CL, Bigio, EH. Frontotemporal lobar degeneration with motor neuron disease-type inclusions predominates in 76 cases of frontotemporal degeneration. Acta Neuropathol (Berl) 2004;108(5):379–85.CrossRefGoogle Scholar
Mackenzie, IR, Baborie, A, Pickering-Brown, Set al. Heterogeneity of ubiquitin pathology in frontotemporal lobar degeneration: classification and relation to clinical phenotype. Acta Neuropathol 2006;112(5):539–49.CrossRefGoogle ScholarPubMed
Sampathu, DM, Neumann, M, Kwong, LKet al. Pathological heterogeneity of frontotemporal lobar degeneration with ubiquitin-positive inclusions delineated by ubiquitin immunohistochemistry and novel monoclonal antibodies. Am J Pathol 2006;169(4):1343–52.CrossRefGoogle ScholarPubMed
Mackenzie, IR, Baker, M, Pickering-Brown, Set al. The neuropathology of frontotemporal lobar degeneration caused by mutations in the progranulin gene. Brain 2006;129(Pt 11):3081–90.CrossRefGoogle ScholarPubMed
Jackson, M, Lennox, G, Lowe, J. Motor neurone disease–inclusion dementia. Neurodegeneration 1996;5(4):339–50.CrossRefGoogle ScholarPubMed
Sreedharan, J, Blair, IP, Tripathi, VBet al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 2008;319(5870):1668–72.CrossRefGoogle ScholarPubMed
Cairns, NJ, Grossman, M, Arnold, SEet al. Clinical and neuropathologic variation in neuronal intermediate filament inclusion disease. Neurology 2004;63(8):1376–84.CrossRefGoogle Scholar
Neumann, M, Sampathu, DM, Kwong, LKet al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 2006;314(5796):130–3.CrossRefGoogle ScholarPubMed
Cairns, NJ, Zhukareva, V, Uryu, Ket al. alpha-internexin is present in the pathological inclusions of neuronal intermediate filament inclusion disease. Am J Pathol 2004;164(6):2153–61.CrossRefGoogle ScholarPubMed
Josephs, KA, Uchikado, H, McComb, RDet al. Extending the clinicopathological spectrum of neurofilament inclusion disease. Acta Neuropathol (Berl) 2005;109(4):427–32.CrossRefGoogle ScholarPubMed
Knopman, DS, Mastri, AR, Frey, WHdet al. Dementia lacking distinctive histologic features: a common non-Alzheimer degenerative dementia. Neurology 1990;40(2):251–6.CrossRefGoogle ScholarPubMed
Josephs, KA, Jones, AG, Dickson, DW. Hippocampal sclerosis and ubiquitin-positive inclusions in dementia lacking distinctive histopathology. Dement Geriatr Cogn Disord 2004;17(4):342–5.CrossRefGoogle ScholarPubMed
Holm, IE, Englund, E, Mackenzie, IRet al. A reassessment of the neuropathology of frontotemporal dementia linked to chromosome 3. J Neuropathol Exp Neurol 2007;66(10):884–91.CrossRefGoogle ScholarPubMed
Mackenzie, IR, Foti, D, Woulfe, J, Hurwitz, TA. Atypical frontotemporal lobar degeneration with ubiquitin-positive, TDP-43-negative neuronal inclusions. Brain 2008;131(Pt 5):1282–93.CrossRefGoogle ScholarPubMed
Josephs, KA, Lin, WL, Ahmed, Zet al. Frontotemporal lobar degeneration with ubiquitin-positive, but TDP-43-negative inclusions. Acta Neuropathol 2008;116(2):159–67.CrossRefGoogle ScholarPubMed
Baker, M, Mackenzie, IR, Pickering-Brown, SMet al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 2006;442:916–19.CrossRefGoogle ScholarPubMed
Cruts, M, Gijselinck, I, Zee, Jet al. Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 2006;442:920–4.CrossRefGoogle ScholarPubMed
Mukherjee, O, Pastor, P, Cairns, NJet al. HDDD2 is a familial frontotemporal lobar degeneration with ubiquitin-positive, tau-negative inclusions caused by a missense mutation in the signal peptide of progranulin. Ann Neurol 2006;60(3):314–22.CrossRefGoogle Scholar
Schymick, JC, Yang, Y, Andersen, PMet al. Progranulin mutations and amyotrophic lateral sclerosis or amyotrophic lateral sclerosis-frontotemporal dementia phenotypes. J Neurol Neurosurg Psychiatry 2007;78(7):754–6.CrossRefGoogle ScholarPubMed
Gass, J, Cannon, A, Mackenzie, IRet al. Mutations in progranulin are a major cause of ubiquitin-positive frontotemporal lobar degeneration. Hum Mol Genet 2006;15(20):2988–3001.CrossRefGoogle ScholarPubMed
Seeley, WW, Carlin, DA, Allman, JMet al. Early frontotemporal dementia targets neurons unique to apes and humans. Ann Neurol 2006;60(6):660–7.CrossRefGoogle Scholar
Seeley, WW, Menon, V, Schatzberg, AFet al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 2007;27(9):2349–56.CrossRefGoogle ScholarPubMed
Hof, PR, Gucht, E. Structure of the cerebral cortex of the humpback whale, Megaptera novaeangliae (Cetacea, Mysticeti, Balaenopteridae). Anat Rec A Discov Mol Cell Evol Biol 2006.
Hakeem, AY, Sherwood, CC, Bonar, CJet al. Von Economo neurons in the elephant brain. Anat Rec (Hoboken) 2009;292(2):242–8.CrossRefGoogle ScholarPubMed
Hodges, JR, Davies, RR, Xuereb, JHet al. Clinicopathological correlates in frontotemporal dementia. Ann Neurol 2004;56(3):399–406.CrossRefGoogle Scholar
Knibb, JA, Xuereb, JH, Patterson, K, Hodges, JR. Clinical and pathological characterization of progressive aphasia. Ann Neurol 2006;59(1):156–65.CrossRefGoogle ScholarPubMed
Davies, RR, Hodges, JR, Kril, JJet al. The pathological basis of semantic dementia. Brain 2005;128(Pt 9):1984–95.CrossRefGoogle ScholarPubMed
Josephs, KA, Duffy, JR, Strand, EAet al. Clinicopathological and imaging correlates of progressive aphasia and apraxia of speech. Brain 2006;129(Pt 6):1385–98.CrossRefGoogle ScholarPubMed
Gorno-Tempini, ML, Murray, RC, Rankin, KPet al. Clinical, cognitive and anatomical evolution from nonfluent progressive aphasia to corticobasal syndrome: a case report. Neurocase 2004;10(6):426–36.CrossRefGoogle ScholarPubMed
Mahapatra, RK, Edwards, MJ, Schott, JM, Bhatia, KP. Corticobasal degeneration. Lancet Neurol 2004;3(12):736–43.CrossRefGoogle ScholarPubMed
Rinne, JO, Lee, MS, Thompson, PD, Marsden, CD. Corticobasal degeneration. A clinical study of 36 cases. Brain 1994;117 (Pt 5):1183–96.CrossRefGoogle ScholarPubMed
Wenning, GK, Litvan, I, Jankovic, Jet al. Natural history and survival of 14 patients with corticobasal degeneration confirmed at postmortem examination. J Neurol Neurosurg Psychiatry 1998;64(2):184–9.CrossRefGoogle ScholarPubMed
Riley, , Lang, AE. Clinical diagnostic criteria. Adv Neurol 2000;82:29–34.Google ScholarPubMed
Graham, NL, Bak, TH, Hodges, JR. Corticobasal degeneration as a cognitive disorder. Mov Disord 2003;18(11):1224–32.CrossRefGoogle ScholarPubMed
Kompoliti, K, Goetz, CG, Boeve, BFet al. Clinical presentation and pharmacological therapy in corticobasal degeneration. Arch Neurol 1998;55(7):957–61.CrossRefGoogle ScholarPubMed
Grimes, DA, Lang, AE, Bergeron, CB. Dementia as the most common presentation of cortical-basal ganglionic degeneration. Neurology 1999;53(9):1969–74.CrossRefGoogle ScholarPubMed
Murray, R, Neumann, M, Forman, MSet al. Cognitive and motor assessment in autopsy-proven corticobasal degeneration. Neurology 2007;68(16):1274–83.CrossRefGoogle ScholarPubMed
Feany, MB, Dickson, DW. Widespread cytoskeletal pathology characterizes corticobasal degeneration. Am J Pathol 1995;146(6):1388–96.Google ScholarPubMed
Litvan, I, Agid, Y, Calne, Det al. Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome): report of the NINDS-SPSP international workshop. Neurology 1996;47(1):1–9.CrossRefGoogle Scholar
Nath, U, Ben-Shlomo, Y, Thomson, RGet al. The prevalence of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome) in the UK. Brain 2001;124(Pt 7):1438–49.CrossRefGoogle Scholar
Lantos, PL. The neuropathology of progressive supranuclear palsy. J Neural Transm Suppl 1994;42:137–52.CrossRefGoogle ScholarPubMed
Komori, T, Arai, N, Oda, Met al. Astrocytic plaques and tufts of abnormal fibers do not coexist in corticobasal degeneration and progressive supranuclear palsy. Acta Neuropathol (Berl) 1998;96(4):401–8.CrossRefGoogle Scholar
Pillon, B, Blin, J, Vidailhet, Met al. The neuropsychological pattern of corticobasal degeneration: comparison with progressive supranuclear palsy and Alzheimer's disease. Neurology 1995;45(8):1477–83.CrossRefGoogle ScholarPubMed
Spillantini, MG, Goedert, M. Tau mutations in familial frontotemporal dementia. Brain 2000;123(Pt 5):857–9.CrossRefGoogle ScholarPubMed
Houlden, H, Baker, M, Morris, HRet al. Corticobasal degeneration and progressive supranuclear palsy share a common tau haplotype. Neurology 2001;56(12):1702–6.CrossRefGoogle Scholar
Lang, AE, Bergeron, C. Corticobasal degeneration and PSP: the same disease?Mov Disord 2002;17:1404–5.Google Scholar
Nasreddine, ZS, Loginov, M, Clark, LNet al. From genotype to phenotype: a clinical pathological, and biochemical investigation of frontotemporal dementia and parkinsonism (FTDP-17) caused by the P301L tau mutation. Ann Neurol 1999;45(6):704–15.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
McKeith, I, Galasko, D, Kosaka, Ket al. Consensus guidleines for the clinical and pathologic diagnosis of dementia with Lewy Bodies. Neurology 1996;47:1113–24.CrossRefGoogle Scholar
Holmes, C, Cairns, N, Lantos, P, Mann, A. Validity of current clinical criteria for Alzheimer's disease, vascular dementia, and dementia with Lewy bodies. Br J Psychiatry 1999;174:45–51.CrossRefGoogle ScholarPubMed
Lim, A, Tsuang, D, Kukull, Wet al. Clinico-neuropathological correlation of Alzheimer's disease in a community-based case series. J Am Geriatr Soc 1999;47(5):564–9.CrossRefGoogle Scholar
Ransmayr, G. Dementia with Lewy bodies: prevalence, clinical spectrum and natural history. J Neural Transm Suppl 2000(60):303–14.Google ScholarPubMed
McKeith, IG, Dickson, DW, Lowe, Jet al. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 2005;65(12):1863–72.CrossRefGoogle ScholarPubMed
Double, KL, Halliday, GM, McRitchie, DAet al. Regional brain atrophy in idiopathic parkinson's disease and diffuse Lewy body disease. Dementia 1996;7(6):304–13.Google ScholarPubMed
Perry, RH, Irving, D, Blessed, G, Fairbairn, A, Perry, EK. Senile dementia of Lewy body type. A clinically and neuropathologically distinct form of Lewy body dementia in the elderly. J Neurol Sci 1990;95:119–139.CrossRefGoogle ScholarPubMed
Rezaie, P, Cairns, NJ, Chadwick, A, Lantos, PL. Lewy bodies are located preferentially in limbic areas in diffuse Lewy body disease. Neurosci Lett 1996;212(2):111–4.CrossRefGoogle ScholarPubMed
Gomez-Tortosa, E, Newell, K, Irizarry, MCet al. Clinical and quantitative pathologic correlates of dementia with Lewy bodies. Neurology 1999;53(6):1284–91.CrossRefGoogle ScholarPubMed
Giasson, B, M-Y Lee, V, Trojanowski, JQ. Parkinson's disease, dementia with lewy bodies, multiple system atrophy and the spectrum of disease with alpha synuclein inclusions. 2nd edn. New York: Cambridge University Press; 2004.Google Scholar
Dickson, DW, Ruan, D, Crystal, Het al. Hippocampal degeneration differentiates diffuse Lewy body disease(DLBD) from Alzheimer's disease: light and electron microscopic immunocytochemistry of CA2-3 neurites specific to DLBD. Neurology 1991;41(9):1402–9.CrossRefGoogle ScholarPubMed
Dickson, D, Schmidt, M, Lee, Vet al. Immunoreactivity profile of hippocampal Ca2/3 neurites in diffuse Lewy body disease. Acta Neuropathologica 1994;87:269–276.CrossRefGoogle ScholarPubMed
Spillantini, MG, Crowther, RA, Jakes, R, Hasegawa, M, Goedert, M. alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with lewy bodies. Proc Natl Acad Sci USA 1998;95(11):6469–73.CrossRefGoogle ScholarPubMed
Kosaka, K. Diffuse Lewy body disease. Neuropathology 2000;20(Suppl):S73–8.CrossRefGoogle ScholarPubMed
Merdes, AR, Hansen, , Jeste, DVet al. Influence of Alzheimer pathology on clinical diagnostic accuracy in dementia with Lewy bodies. Neurology 2003;60(10):1586–90.CrossRefGoogle ScholarPubMed
Del Ser, T, Hachinski, V, Merskey, H, Munoz, DG. Clinical and pathologic features of two groups of patients with dementia with Lewy bodies: effect of coexisting Alzheimer-type lesion load. Alzheimer Dis Assoc Disord 2001;15(1):31–44.Google ScholarPubMed
Lopez, OL, Becker, JT, Kaufer, DIet al. Research evaluation and prospective diagnosis of dementia with Lewy bodies. Arch Neurol 2002;59(1):43–6.CrossRefGoogle Scholar
Schrag, A, Ben-Shlomo, Y, Quinn, NP. Prevalence of progressive supranuclear palsy and multiple system atrophy: a cross-sectional study. Lancet 1999;354(9192):1771–5.CrossRefGoogle ScholarPubMed
Wenning, GK, Colosimo, C, Geser, F, Poewe, W. Multiple system atrophy. Lancet Neurol 2004;3(2):93–103.CrossRefGoogle ScholarPubMed
Wenning, GK, Tison, F, Ben Shlomo, Y, Daniel, SE, Quinn, NP. Multiple system atrophy: a review of 203 pathologically proven cases. Mov Disord 1997;12(2):133–47.CrossRefGoogle ScholarPubMed
Gilman, S, Low, PA, Quinn, Net al. Consensus statement on the diagnosis of multiple system atrophy. J Neurol Sci 1999;163(1):94–8.CrossRefGoogle Scholar
Robbins, TW, James, M, Owen, AMet al. Cognitive deficits in progressive supranuclear palsy, Parkinson's disease, and multiple system atrophy in tests sensitive to frontal lobe dysfunction. J Neurol Neurosurg Psychiatry 1994;57(1):79–88.CrossRefGoogle ScholarPubMed
Meco, G, Gasparini, M, Doricchi, F. Attentional functions in multiple system atrophy and Parkinson's disease. J Neurol Neurosurg Psychiatry 1996;60(4):393–8.CrossRefGoogle ScholarPubMed
Burk, K, Daum, I, Rub, U. Cognitive function in multiple system atrophy of the cerebellar type. Mov Disord 2006;21(6):772–6.CrossRefGoogle ScholarPubMed
Sato, K, Kaji, R, Matsumoto, S, Goto, S. Cell type-specific neuronal loss in the putamen of patients with multiple system atrophy. Mov Disord 2007;22(5):738–42.CrossRefGoogle ScholarPubMed
Wenning, GK, Tison, F, Elliott, L, Quinn, NP, Daniel, SE. Olivopontocerebellar pathology in multiple system atrophy. Mov Disord 1996;11(2):157–62.CrossRefGoogle ScholarPubMed
Gai, WP, Power, JH, Blumbergs, PC, Blessing, WW. Multiple-system atrophy: a new alpha-synuclein disease?Lancet 1998;352(9127):547–8.CrossRefGoogle ScholarPubMed
Tu, PH, Galvin, JE, Baba, M, Giasson, Bet al. Glial cytoplasmic inclusions in white matter oligodendrocytes of multiple system atrophy brains contain insoluble alpha-synuclein. Ann Neurol 1998;44(3):415–22.CrossRefGoogle ScholarPubMed
Lantos, PL. The definition of multiple system atrophy: a review of recent developments. J Neuropathol Exp Neurol 1998;57(12):1099–111.CrossRefGoogle ScholarPubMed
Duda, JE, Giasson, BI, Gur, TLet al. Immunohistochemical and biochemical studies demonstrate a distinct profile of alpha-synuclein permutations in multiple system atrophy. J Neuropathol Exp Neurol 2000;59(9):830–41.CrossRefGoogle ScholarPubMed
Lin, WL, DeLucia, MW, Dickson, DW. Alpha-synuclein immunoreactivity in neuronal nuclear inclusions and neurites in multiple system atrophy. Neurosci Lett 2004;354(2):99–102.CrossRefGoogle ScholarPubMed
Polymeropoulos, M, Lavedan, C, Leroy, Eet al. Mutation in the alpha-synuclein gene identified in families with Parkinson's diseae. Science 1997;276:2045–8.CrossRefGoogle Scholar
Soma, H, Yabe, I, Takei, Aet al. Heredity in multiple system atrophy. J Neurol Sci 2006;240(1–2):107–10.CrossRefGoogle ScholarPubMed
Hara, K, Momose, Y, Tokiguchi, Set al. Multiplex families with multiple system atrophy. Arch Neurol 2007;64(4):545–51.CrossRefGoogle ScholarPubMed
Folstein, S. Huntington's Disease: A Disorder of Families. Baltimore: Johns Hopkins University Press; 1989.Google Scholar
Feigin, A, Kieburtz, K, Bordwell, Ket al. Functional decline in Huntington's disease. Mov Disord 1995;10(2):211–4.CrossRefGoogle ScholarPubMed
Zakzanis, KK. The subcortical dementia of Huntington's disease. J Clin Exp Neuropsychol 1998;20(4):565–78.CrossRefGoogle ScholarPubMed
Mendez, MF. Huntington's disease: update and review of neuropsychiatric aspects. Int J Psychiatry Med 1994;24(3):189–208.CrossRefGoogle ScholarPubMed
Berrios, GE, Wagle, AC, Markova, ISet al. Psychiatric symptoms in neurologically asymptomatic Huntington's disease gene carriers: a comparison with gene negative at risk subjects. Acta Psychiatr Scand 2002;105(3):224–30.CrossRefGoogle ScholarPubMed
Vonsattel, JP, DiFiglia, M. Huntington disease. J Neuropathol Exp Neurol 1998;57(5):369–84.CrossRefGoogle ScholarPubMed
Graveland, GA, Williams, RS, DiFiglia, M. Evidence for degenerative and regenerative changes in neostriatal spiny neurons in Huntington's disease. Science 1985;227(4688):770–3.CrossRefGoogle ScholarPubMed
Vonsattel, J-P, Myers, RH, Stevens, TJet al. Neuropathological classification of Huntington's disease. J Neuropath Exp Neurology 1985;44:559–77.CrossRefGoogle ScholarPubMed
,The Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 1993;72:971–83.
Brandt, J, Bylsma, FW, Gross, Ret al. Trinucleotide repeat length and clinical progression in Huntington's disease. Neurology 1996;46(2):527–31.CrossRefGoogle ScholarPubMed
Persichetti, F, Srinidhi, J, Kanaley, Let al. Huntington's disease CAG trinucleotide repeats in pathologically confirmed post-mortem brains. Neurobiol Dis 1994;1(3):159–66.CrossRefGoogle ScholarPubMed
Busch, A, Engemann, S, Lurz, Ret al. Mutant huntingtin promotes the fibrillogenesis of wild-type huntingtin: a potential mechanism for loss of huntingtin function in Huntington's disease. J Biol Chem 2003;278(42):41452–61.CrossRefGoogle ScholarPubMed
Zuccato, C, Liber, D, Ramos, Cet al. Progressive loss of BDNF in a mouse model of Huntington's disease and rescue by BDNF delivery. Pharmacol Res 2005;52(2):133–9.CrossRefGoogle Scholar
Mackenzie, IR, Bigio, EH, Ince, PGet al. Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann Neurol 2007;61(5):427–34.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×