Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T19:20:12.509Z Has data issue: false hasContentIssue false

2 - Ion channels and the Hodgkin–Huxley model

Published online by Cambridge University Press:  05 August 2014

Wulfram Gerstner
Affiliation:
École Polytechnique Fédérale de Lausanne
Richard Naud
Affiliation:
University of Ottawa
Liam Paninski
Affiliation:
Columbia University, New York
Get access

Summary

From a biophysical point of view, action potentials are the result of currents that pass through ion channels in the cell membrane. In an extensive series of experiments on the giant axon of the squid, Hodgkin and Huxley succeeded in measuring these currents and described their dynamics in terms of differential equations. Their paper published in 1952, which presents beautiful experiments combined with an elegant mathematical theory (Hodgkin and Huxley, 1952), was rapidly recognized as groundbreaking work and eventually led to the Nobel Prize for Hodgkin and Huxley in 1963. In this chapter, the Hodgkin–Huxley model is reviewed and its behavior illustrated by several examples.

The Hodgkin–Huxley model in its original form describes only three types of ion channel. However, as we shall see in Section 2.3 it can be extended to include many other ion channel types. The Hodgkin–Huxley equations are the basis for detailed neuron models which account for different types of synapse, and the spatial geometry of an individual neuron. Synaptic dynamics and the spatial structure of dendrites are the topics of Chapter 3. The Hodgkin–Huxley model is also the starting point for the derivation of simplified neuron models in Chapter 4 and will serve as a reference throughout the discussion of generalized integrate-and-fire models in Part II of the book.

Before we can turn to the Hodgkin–Huxley equations, we need to give some additional information on the equilibrium potential of ion channels.

Type
Chapter
Information
Neuronal Dynamics
From Single Neurons to Networks and Models of Cognition
, pp. 28 - 57
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×