Published online by Cambridge University Press: 05 November 2013
Scope
This chapter describes the stratified pattern observed in gas–liquid flows, for which liquid flows along the bottom of a conduit and gas flows along the top. The gas exerts a shear stress on the surface of the liquid. It is desired to calculate the average height of the liquid layer and the pressure gradient for given liquid and gas flow rates. The flow is considered to be fully developed so that the height of the liquid is not changing in the flow direction and the pressure gradient is the same in the gas and liquid flows.
In order to consider stratified flow in circular pipes, the simplified model of the flow pattern, presented by Govier & Aziz (1972), is exploited. The interface is pictured to be flat. At large gas velocities, some of the liquid can be entrained in the gas. This pattern is considered in Section 12.5 entitled “the pool model” for horizontal annular flow.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.