Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T22:08:15.537Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 May 2016

Stephan Ramon Garcia
Affiliation:
Pomona College, California
Javad Mashreghi
Affiliation:
Université Laval, Québec
William T. Ross
Affiliation:
University of Richmond, Virginia
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Abakumov, E.V. 1995. Cyclicity and approximation by lacunary power series. Michigan Math. J., 42(2), 277–299.Google Scholar
[2] Agler, J. and McCarthy, J. E. 2002. Pick Interpolation and Hilbert Function Spaces. Graduate Studies in Mathematics, vol. 44. Providence, RI: American Mathematical Society.
[3] Ahern, P. R. and Clark, D. N. 1970a. On functions orthogonal to invariant subspaces. Acta Math., 124, 191–204.Google Scholar
[4] Ahern, P. R. and Clark, D. N. 1970b. Radial limits and invariant subspaces. Amer. J. Math., 92, 332–342.Google Scholar
[5] Ahern, P.R. and Clark, D. N. 1971. Radial nth derivatives of Blaschke products. Math. Scand., 28, 189–201.Google Scholar
[6] Akhiezer, N. I. and Glazman, I. M. 1993. Theory of Linear Operators in Hilbert Space. New York: Dover Publications. Translated from the Russian and with a preface by Merlynd Nestell, reprint of the 1961 and 1963 translations, two volumes bound as one.
[7] Aleksandrov, A. B. 1987. Multiplicity of boundary values of inner functions. Izv. Akad. Nauk Armyan. SSR Ser. Mat., 22(5), 490–503, 515.Google Scholar
[8] Aleksandrov, A. B. 1989. Inner functions and related spaces of pseudocontinuable functions. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 170(17), 7–33, 321.Google Scholar
[9] Aleksandrov, A. B. 1995. On the existence of angular boundary values of pseudocontinuable functions. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 222(23), 5–17, 307.Google Scholar
[10] Aleksandrov, A. B. 1996. Isometric embeddings of co-invariant subspaces of the shift operator. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 232(24), 5–15, 213.Google Scholar
[11] Aleksandrov, A. B. 1997. Gap series and pseudocontinuations: an arithmetic approach. Algebra i Analiz, 9(1), 3–31.Google Scholar
[12] Aleksandrov, A. B. 1999. Embedding theorems for coinvariant subspaces of the shift operator. II. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 262(27), 5–48, 231.Google Scholar
[13] Aleman, A. and Richter, S. 1996. Simply invariant subspaces of H2 of some multiply connected regions. Integral Equations Operator Theory, 24(2), 127–155.Google Scholar
[14] Aleman, A. and Ross, W. T. 1996. The backward shift on weighted Bergman spaces. Michigan Math. J., 43(2), 291–319.Google Scholar
[15] Aleman, A., Richter, S. and Ross, W. T. 1998. Pseudocontinuations and the backward shift. Indiana Univ. Math. J., 47(1), 223–276.Google Scholar
[16] Aleman, A., Feldman, N. S., and Ross, W. T. 2009. The Hardy Space of a Slit Domain. Frontiers in Mathematics. Basel: Birkhäuser Verlag.
[17] Arias de Reyna, J. 2002. Pointwise Convergence of Fourier Series. Lecture Notes in Mathematics, vol. 1785. Berlin: Springer-Verlag.
[18] Aronszajn, N. 1950. Theory of reproducing kernels. Trans. Amer. Math. Soc., 68, 337–404.Google Scholar
[19] Arov, D. Z. 1971. Darlington's method in the study of dissipative systems. Dokl. Akad. Nauk SSSR, 201(3), 559–562.Google Scholar
[20] Arveson, W. 2002. A Short Course on Spectral Theory. Graduate Texts in Mathematics, vol. 209. New York: Springer-Verlag.
[21] Bagemihl, F. and Seidel, W. 1954. Some boundary properties of analytic functions. Math. Z., 61, 186–199.Google Scholar
[22] Ball, J. 1973. Unitary perturbations of contractions. Ph.D. thesis, University of Virginia.
[23] Ball, J. A. and Lubin, A. 1976. On a class of contractive perturbations of restricted shifts. Pacific J. Math., 63(2), 309–323.Google Scholar
[24] Baranov, A. I., Chalendar, E., Fricain, E., Mashreghi, J., and Timotin, D. 2010. Bounded symbols and reproducing kernel thesis for truncated Toeplitz operators. J. Funct. Anal., 259(10), 2673–2701.Google Scholar
[25] Baranov, A., Bessonov, R. and Kapustin, V. 2011. Symbols of truncated Toeplitz operators. J. Funct. Anal., 261(12), 3437–3456.Google Scholar
[26] Bari, N. K. 1951. Biorthogonal systems and bases in Hilbert space. Moskov. Gos. Univ. U?cenye Zapiski Matematika, 148(4), 69–107.Google Scholar
[27] Bercovici, H. 1988. Operator Theory and Arithmetic in H8. Mathematical Surveys and Monographs, vol. 26. Providence, RI: American Mathematical Society.
[28] Berman, R. D. and Cohn, W. S. 1987. Tangential limits of Blaschke products and functions of bounded mean oscillation. Illinois J. Math., 31(2), 218–239.Google Scholar
[29] Bessonov, R. V. 2014. Truncated Toeplitz operators of finite rank. Proc. Amer. Math. Soc., 142(4), 1301–1313.Google Scholar
[30] Beurling, A. 1948. On two problems concerning linear transformations in Hilbert space. Acta Math., 81, 17.Google Scholar
[31] Blandignéres, A., Fricain, E., Gaunard, F., Hartmann, A. and Ross, W. 2013. Reverse Carleson embeddings for model spaces. J. Lond. Math. Soc. (2), 88(2), 437–464.Google Scholar
[32] Boas, Jr., R. P. 1941. A general moment problem. Amer. J. Math., 63, 361–370.Google Scholar
[33] Böttcher, A. and Silbermann, B. 2006. Analysis of Toeplitz Operators, 2nd edn. SpringerMonographs in Mathematics. Berlin: Springer-Verlag. Prepared jointly with Alexei Karlovich.
[34] Brown, A. and Halmos, P. R. 1963/1964. Algebraic properties of Toeplitz operators. J. Reine Angew. Math., 213, 89–102.Google Scholar
[35] Brown, L., and Shields,, A. L. 1984. Cyclic vectors in the Dirichlet space. Trans. Amer. Math. Soc., 285(1), 269–303.Google Scholar
[36] Cargo, G. T. 1962. Angular and tangential limits of Blaschke products and their successive derivatives. Canad. J. Math., 14, 334–348.Google Scholar
[37] Chalendar, I. and Timotin, D. Commutation relations for truncated Toeplitz operators. arXiv:1305.6739.
[38] Chalendar, I., Fricain, E., and Timotin, D. 2009. On an extremal problem of Garcia and Ross. Oper. Matrices, 3(4), 541–546.Google Scholar
[39] Chevrot, N., Fricain, E., and Timotin, D. 2007. The characteristic function of a complex symmetric contraction. Proc. Amer. Math. Soc., 135(9), 2877–2886 (electronic).Google Scholar
[40] Christensen, O. 2003. An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis. Boston, MA: Birkhäuser Boston Inc.
[41] Cima, J.A. and Ross, W. T. 2000. The Backward Shift on the Hardy Space. Mathematical Surveys and Monographs, vol. 79. Providence, RI: American Mathematical Society.
[42] Cima, J.A., Matheson, A. L., and Ross, W. T. 2006. The Cauchy Transform. Mathematical Surveys and Monographs, vol. 125. Providence, RI: American Mathematical Society.
[43] Cima, J.A., Ross, W. T., and Wogen, W. R. 2008. Truncated Toeplitz operators on finite dimensional spaces. Oper. Matrices, 2(3), 357–369.Google Scholar
[44] Cima, J.A. and Matheson, A. L. 1997. Essential norms of composition operators and Aleksandrov measures. Pacific J. Math., 179(1), 59–64.Google Scholar
[45] Cima, J.A., Garcia, S. R., Ross, W. T., and Wogen, W. R. 2010. Truncated Toeplitz operators: spatial isomorphism, unitary equivalence, and similarity. Indiana Univ. Math. J., 59(2), 595–620.Google Scholar
[46] Clark, D. N. 1972. One dimensional perturbations of restricted shifts. J. Analyse Math., 25, 169–191.Google Scholar
[47] Coburn|L. A. 1967. The C*-algebra generated by an isometry. Bull. Amer. Math. Soc., 73, 722–726.
[48] Coburn, L.A. 1969. The C*-algebra generated by an isometry. II. Trans. Amer. Math. Soc., 137, 211–217.Google Scholar
[49] Cohn, B. 1982. Carleson measures for functions orthogonal to invariant subspaces. Pacific J. Math., 103(2), 347–364.Google Scholar
[50] Collingwood, E. F. and Lohwater, A. J. 1966. The Theory of Cluster Sets. Cambridge Tracts in Mathematics and Mathematical Physics, No. 56. Cambridge: Cambridge University Press.
[51] Conway, J. B. 1990. A Course in Functional Analysis, 2nd edn. Graduate Texts in Mathematics, vol. 96. New York: Springer-Verlag.
[52] Conway, J. B. 2000. A Course in Operator Theory. Graduate Studies in Mathematics, vol. 21. Providence, RI: American Mathematical Society.
[53] Cowen, C. and MacCluer, B. D. 1995. Composition Operators on Spaces of Analytic Functions. Studies in Advanced Mathematics. Boca Raton, FL: CRC Press.
[54] Crofoot, R.B. 1994. Multipliers between invariant subspaces of the backward shift. Pacific J. Math., 166(2), 225–246.Google Scholar
[55] Danciger, J., Garcia, S. R., and Putinar, M. 2008. Variational principles for symmetric bilinear forms. Math. Nachr., 281(6), 786–802.Google Scholar
[56] Davidson, K. R. 1996. C*-algebras by example. Fields Institute Monographs, vol. 6. Providence, RI: American Mathematical Society.
[57] de Branges, L. 1968. Hilbert Spaces of Entire Functions. Englewood Cliffs, NJ: Prentice-Hall.
[58] de Branges, L. and Rovnyak, J. 1966. Square Summable Power Series. London: Holt, Rinehart and Winston.
[59] Douglas, R.G. 1998. Banach Algebra Techniques in Operator Theory, 2nd edn. Graduate Texts in Mathematics, vol. 179. New York: Springer-Verlag.
[60] Douglas, R.G., and Helton, J.W. 1973. Inner dilations of analytic matrix functions and Darlington synthesis. Acta Sci. Math. (Szeged), 34, 61–67.Google Scholar
[61] Douglas, R. G., Shapiro, H. S., and Shields, A. L. 1970. Cyclic vectors and invariant subspaces for the backward shift operator. Ann. Inst. Fourier (Grenoble), 20(1), 37–76.Google Scholar
[62] Douglas, R. G. 1972. Banach Algebra Techniques in Operator Theory. Pure and Applied Mathematics, vol. 49. New York: Academic Press.
[63] Duren, P. L. 1970. Theory of Hp Spaces. New York: Academic Press.
[64] Duren, P. and Schuster, A. 2004. Bergman Spaces. Mathematical Surveys and Monographs, vol. 100. Providence, RI: American Mathematical Society.
[65] Dyakonov, K. and Khavinson, D. 2006. Smooth functions in star-invariant subspaces. In Recent Advances in Operator-Related Function Theory. Contemporary Mathematics, vol. 393. Providence, RI: American Mathematical Society, pp. 59–66.
[66] Dyakonov, K. M. 2000. Kernels of Toeplitz operators via Bourgain's factorization theorem. J. Funct. Anal., 170(1), 93–106.Google Scholar
[67] Dyakonov, K. M. 2012. Zeros of analytic functions, with or without multiplicities. Math. Ann., 352(3), 625–641.Google Scholar
[68] Dyakonov, K. M. 2014. Two problems on coinvariant subspaces of the shift operator. Integral Equations Operator Theory, 78(2), 151–154.Google Scholar
[69] Ebbinghaus, H.-D., Hermes, H., Hirzebruch, F., Koecher, M., Mainzer, K., Neukirch, J., Prestel, A., and Remmert, R. 1991. Numbers. Graduate Texts in Mathematics, vol. 123. New York: Springer-Verlag. Translated from the second 1988 German edition by H. L. S., Orde.
[70] El-Fallah, O., Kellay, K., Mashreghi, J., and Ransford, T. 2014. A Primer on the Dirichlet Space. Cambridge Tracts in Mathematics, vol. 203. Cambridge: Cambridge University Press.
[71] Erdélyi, I. 1966. On partial isometries in finite-dimensional Euclidean spaces. SIAM J. Appl. Math., 14, 453–467.Google Scholar
[72] Fabry, E.1898–1899. Sur les séries de Taylor qui ont une infinité de points singuliers. Acta Math., 22, 65–88.
[73] Fricain, E., and Mashreghi, J. 2014. The Theory of H(b) spaces, Volume 1. New Mathematical Monographs, vol. 20. Cambridge: Cambridge University Press.
[74] Fricain, E., and Mashreghi, J. 2015. The Theory of H(b) Spaces, Volume 2. New Mathematical Monographs, vol. 21. Cambridge: Cambridge University Press.
[75] Frostman, O. 1942. Sur les produits de Blaschke. Kungl. Fysiografiska Sällskapets i Lund Förhandlingar [Proc. Roy. Physiog. Soc. Lund], 12(15), 169–182.Google Scholar
[76] Fuhrmann, P. A. 1968. On the corona theorem and its application to spectral problems in Hilbert space. Trans. Amer. Math. Soc., 132, 55–66.Google Scholar
[77] Fuhrmann, P. A. 1976. Exact controllability and observability and realization theory in Hilbert space. J. Math. Anal. Appl., 53(2), 377–392.Google Scholar
[78] Garcia, S. R. 2006. Conjugation and Clark operators. In Recent Advances in Operator-related Function Theory. Contemporary Mathematics, vol. 393. Providence, RI: American Mathematical Society, pp. 67–111.
[79] Garcia, S. R. 2008a. Aluthge transforms of complex symmetric operators. Integral Equations Operator Theory, 60(3), 357–367.Google Scholar
[80] Garcia, S. R. and Putinar, M. 2006. Complex symmetric operators and applications. Trans. Amer. Math. Soc., 358(3), 1285–1315 (electronic).Google Scholar
[81] Garcia, S. R. and Putinar, M. 2007. Complex symmetric operators and applications. II. Trans. Amer. Math. Soc., 359(8), 3913–3931 (electronic).Google Scholar
[82] Garcia, S. R. and Wogen, W. R. 2009. Complex symmetric partial isometries. J. Funct. Anal., 257(4), 1251–1260.Google Scholar
[83] Garcia, S. R. and Wogen, W. R. 2010. Some new classes of complex symmetric operators. Trans. Amer. Math. Soc., 362(11), 6065–6077.Google Scholar
[84] Garcia, S. R. and Putinar, M. 2008. Interpolation and complex symmetry. Tohoku Math. J. (2), 60(3), 423–440.Google Scholar
[85] Garcia, S. R. 2005a. A *-closed subalgebra of the Smirnov class. Proc. Amer. Math. Soc., 133(7), 2051–2059 (electronic).Google Scholar
[86] Garcia, S. R. 2005b. Conjugation, the backward shift, and Toeplitz kernels. J. Operator Theory, 54(2), 239–250.Google Scholar
[87] Garcia, S. R. 2005c. Inner matrices and Darlington synthesis. Methods Funct. Anal. Topology, 11(1), 37–47.Google Scholar
[88] Garcia, S. R. 2008b. The eigenstructure of complex symmetric operators. Pages 169–183 of: Recent advances in matrix and operator theory. Oper. TheoryAdv. Appl., vol. 179. Basel: Birkhäuser.
[89] Garcia, S. R. and Poore, D. E. 2013a. On the closure of the complex symmetric operators: compact operators and weighted shifts. J. Funct. Anal., 264(3), 691–712.Google Scholar
[90] Garcia, S. R. and Poore, D. E. 2013b. On the norm closure problem for complex symmetric operators. Proc. Amer. Math. Soc., 141(2), 549.Google Scholar
[91] Garcia, S. R. and Ross, W. T. 2009. A non-linear extremal problem on the Hardy space. Comput. Methods Funct. Theory, 9(2), 485–524.Google Scholar
[92] Garcia, S. R. and Ross, W. T. 2010. The norm of a truncated Toeplitz operator. In Hilbert Spaces of Analytic Functions. CRM Proc. Lecture Notes, vol. 51. Providence, RI: American Mathematical Society, pp. 59–64.
[93] Garcia, S. R. and Ross, W. T. 2013. Recent progress on truncated Toeplitz operators. In Blaschke Products and their Applications. Fields Institute Communications, vol. 65. New York: Springer, pp. 275–319.
[94] Garcia, S. R. and Sarason, D. 2003. Real outer functions. Indiana Univ. Math. J., 52(6), 1397–1412.Google Scholar
[95] Garcia, S.R., Ross, W. T., and Wogen, W. R. 2010a. Spatial isomorphisms of algebras of truncated Toeplitz operators. Indiana Univ. Math. J., 59(6), 1971– 2000.Google Scholar
[96] Garcia, S. R., Ross, W. T., and Wogen, W. R. 2010b. Spatial isomorphisms of algebras of truncated Toeplitz operators. Indiana Univ. Math. J., 59(6), 1971– 2000.Google Scholar
[97] Garnett, J. 2007. Bounded Analytic Functions. Graduate Texts in Mathematics, vol. 236. New York: Springer.
[98] Gilbreath, T. M. and Wogen, W. R. 2007. Remarks on the structure of complex symmetric operators. Integral Equations Operator Theory, 59(4), 585–590.Google Scholar
[99] Gohberg, I.C. and Krupnik, N. Ja. 1969. The algebra generated by the Toeplitz matrices. Funkcional. Anal. i Priložen., 3(2), 46–56.Google Scholar
[100] Gorbachuk, M. L. and Gorbachuk, V. I. 1997. M. G. Krein's Lectures on Entire Operators. Operator Theory: Advances and Applications, vol. 97. Basel: Birkhäuser Verlag.
[101] Hadamard, J. 1892. Essai sur l'étude des fonctions données par leur développement de Taylor. J. Math., 8, 101–186.Google Scholar
[102] Hartmann, A. and Ross, W. T. 2012a. Bad boundary behavior in star-invariant subspaces I. Arkiv for Matematik, 1–22.Google Scholar
[103] Hartmann, A. and Ross, W. T. 2012b. Bad boundary behavior in star invariant subspaces II. Ann. Acad. Sci. Fenn. Math., 37(2), 467–478.Google Scholar
[104] Hartmann, A. and Ross, W. T. 2013. Truncated Toeplitz operators and boundary values in nearly invariant subspaces. Complex Anal. Oper. Theory, 7(1), 261– 273.Google Scholar
[105] Havin, V. and Mashreghi, J. 2003a. Admissible majorants for model subspaces of H2. I. Slow winding of the generating inner function. Canad. J. Math., 55(6), 1231–1263.Google Scholar
[106] Havin, V. and Mashreghi, J. 2003b. Admissible majorants for model subspaces of H2. II. Fast winding of the generating inner function. Canad. J. Math., 55(6), 1264–1301.Google Scholar
[107] Hayashi, E. 1986. The kernel of a Toeplitz operator. Integral Equations Operator Theory, 9(4), 588–591.Google Scholar
[108] Hayashi, E. 1990. Classification of nearly invariant subspaces of the backward shift. Proc. Amer. Math. Soc., 110(2), 441–448.Google Scholar
[109] Hedenmalm, H., Korenblum, B., and Zhu, K. 2000. Theory of Bergman spaces. Graduate Texts in Mathematics, vol. 199. New York: Springer-Verlag.
[110] Helson, H. 1990. Large analytic functions. II. In Analysis and partial differential equations. Lecture Notes in Pure and AppliedMathematics, vol. 122. New York: Dekker, pp. 217–220.
[111] Hitt, D. 1988. Invariant subspaces of H2 of an annulus. Pacific J. Math., 134(1), 101–120.Google Scholar
[112] Hoffman, K. 1962. Banach Spaces of Analytic Functions. Prentice-Hall Series in Modern Analysis. Englewood Cliffs, NJ: Prentice-Hall Inc.
[113] Hrušcev, S.V., and Vinogradov, S.A. 1981. Inner functions and multipliers of Cauchy type integrals. Ark. Mat., 19(1), 23–42.Google Scholar
[114] Inoue, J. 1994. An example of a nonexposed extreme function in the unit ball of H1. Proc. Edinburgh Math. Soc. (2), 37(1), 47–51.Google Scholar
[115] Jung, S., Ko, E., and Lee, J. On scalar extensions and spectral decompositions of complex symmetric operators. J. Math. Anal. Appl. preprint.
[116] Jung, S., Ko, E., Lee, M., and Lee, J. 2011. On local spectral properties of complex symmetric operators. J. Math. Anal. Appl., 379, 325–333.Google Scholar
[117] Kelley, J. L. 1975. General topology. New York-Berlin: Springer-Verlag. Reprint of the 1955 edition [Van Nostrand, Toronto, Ont.], Graduate Texts in Mathematics, No. 27.
[118] Koosis, P. 1998. Introduction to Hp Spaces, 2nd edn. Cambridge Tracts in Mathematics, vol. 115. Cambridge: Cambridge University Press.
[119] Kriete, III, T. L. 1970/71. On the Fourier coefficients of outer functions. Indiana Univ. Math. J., 20, 147–155.Google Scholar
[120] Kriete, III, T. L. 1971. A generalized Paley-Wiener theorem. J. Math. Anal. Appl., 36, 529–555.Google Scholar
[121] Lacey, M. T., Sawyer, E. T., Shen, C.-Y., Uriarte-Tuero, I., and Wick, B. D. Two weight inequalities for the Cauchy transform from R to C+. ArXiv:1310. 4820v2.
[122] Lanucha, B. 2014. Matrix representations of truncated Toeplitz operators. J. Math. Anal. Appl., 413(1), 430–437.Google Scholar
[123] Li, C.G., Zhu, S., and Zhou, T. Foguel operators with complex symmetry. preprint.
[124] Lim, L.-H., and Ye, K. Every matrix is a product of Toeplitz matrices. arXiv:1307.5132v2.
[125] Livsic, M. 1946. On a class of linear operators in Hilbert space. Mat. Sb., 19, 239–262.Google Scholar
[126] Livšic, M. S. 1960. Isometric operators with equal deficiency indices, quasiunitary operators. Amer. Math. Soc. Transl. (2), 13, 85–103.Google Scholar
[127] Lohwater, A. J. and Piranian, G. 1957. The boundary behavior of functions analytic in a disk. Ann. Acad. Sci. Fenn. Ser. A. I., 1957(239), 17.Google Scholar
[128] Lotto, B. A. and McCarthy, J. E. 1993. Composition preserves rigidity. Bull. London Math. Soc., 25(6), 573–576.Google Scholar
[129] Lusin, N. and Priwaloff, J. 1925. Sur l'unicité et la multiplicité des fonctions analytiques. Ann. Sci. école Norm. Sup. (3), 42, 143–191.Google Scholar
[130] Makarov, N. and Poltoratski, A. 2005. Meromorphic inner functions, Toeplitz kernels and the uncertainty principle. In Perspectives in Analysis. Mathematical Physics Studies, vol. 27. Berlin: Springer, pp. 185–252.
[131] Martin, R. T. W. 2010. Symmetric operators and reproducing kernel Hilbert spaces. Complex Anal. Oper. Theory, 4(4), 845–880.Google Scholar
[132] Martin, R. T. W. 2011. Representation of simple symmetric operators with deficiency indices (1, 1) in de Branges space. Complex Anal. Oper. Theory, 5(2), 545–577.Google Scholar
[133] Martin, R. T. W. 2013. Unitary perturbations of compressed n-dimensional shifts. Complex Anal. Oper. Theory, 7(4), 765–799.Google Scholar
[134] Martĺnez-Avendaño, R. A. and Rosenthal, P. 2007. An Introduction to Operators on the Hardy-Hilbert Space. Graduate Texts in Mathematics, vol. 237. New York: Springer.
[135] Mashreghi, J. and Shabankhah, M. 2014. Composition of inner functions. Canad. J. Math., 66(2), 387–399.Google Scholar
[136] Mashreghi, J. 2009. Representation Theorems in Hardy Spaces. London Mathematical Society Student Texts, vol. 74. Cambridge: Cambridge University Press.
[137] Mashreghi, J. 2013. Derivatives of Inner Functions. Fields Institute Monographs, vol. 31. New York: Springer.
[138] Mashreghi, J., and Shabankhah, M. 2013. Composition operators on finite rank model subspaces. Glasg. Math. J., 55(1), 69–83.Google Scholar
[139] Mason, R. C. 1984. Diophantine equations over function fields. London Mathematical Society Lecture Note Series, vol. 96. Cambridge: Cambridge University Press.
[140] Moeller, J. W. 1962. On the spectra of some translation invariant spaces. J. Math. Anal. Appl., 4, 276–296.Google Scholar
[141] Nikolski, N. 1986. Treatise on the Shift Operator. Berlin: Springer-Verlag.
[142] Nikolski, N. 2002a. Operators, Functions, and Systems: An Easy Reading. Vol. 1. Mathematical Surveys and Monographs, vol. 92. Providence, RI: American Mathematical Society. Translated from the French by Andreas Hartmann.
[143] Nikolski, N. 2002b. Operators, Functions, and Systems: An Easy Reading. Vol. 2. Mathematical Surveys and Monographs, vol. 93. Providence, RI: American Mathematical Society. Translated from the French by Andreas Hartmann and revised by the author.
[144] Paulsen, V. 2009. An Introduction to the Theory of Reproducing Kernel Hilbert Spaces. www.math.uh.edu/vern/rkhs.pdf.
[145] Peller, V. V. 1993. Invariant subspaces of Toeplitz operators with piecewise continuous symbols. Proc. Amer. Math. Soc., 119(1), 171–178.Google Scholar
[146] Poltoratski, A. and Sarason, D. 2006. Aleksandrov-Clark measures. In Recent Advances in Operator-related Function Theory. Contemporary Mathematics, vol. 393. Providence, RI: American Mathematical Society, pp. 1–14.
[147] Poltoratski, A. G. 2001. Properties of exposed points in the unit ball of H1. Indiana Univ. Math. J., 50(4), 1789–1806.Google Scholar
[148] Poltoratskii, A. G. 1993. Boundary behavior of pseudocontinuable functions. Algebra i Analiz, 5(2), 189–210.Google Scholar
[149] Privalov, I. I. 1956. Randeigenschaften Analytischer Funktionen. Berlin: VEB Deutscher Verlag der Wissenschaften.
[150] Radjavi, H. and Rosenthal, P. 1973. Invariant Subspaces. Heidelberg: Springer- Verlag.
[151] Richter, S. 1988. Invariant subspaces of the Dirichlet shift. J. Reine Angew. Math., 386, 205–220.Google Scholar
[152] Riesz, F. and Sz.-Nagy, B. 1955. Functional Analysis. New York: Frederick Ungar. Translated by Leo F., Boron.
[153] Rosenblum, M. and Rovnyak, J. 1985. Hardy Classes and Operator Theory. Oxford Mathematical Monographs. New York: The Clarendon Press/Oxford University Press.
[154] Ross, W. T., and Shapiro, H. S. 2002. Generalized Analytic Continuation. University Lecture Series, vol. 25. Providence, RI: American Mathematical Society.
[155] Ross, W. T. 2008. Indestructible Blaschke products. In Banach Spaces of Analytic Functions. Contemporary Mathematics, vol. 454. Providence, RI: American Mathematical Society, pp. 119–134.
[156] Ross, W. T. and Shapiro, H. S. 2003. Prolongations and cyclic vectors. Comput. Methods Funct. Theory, 3(1-2), 453–483.Google Scholar
[157] Royden, H. L. 1988. Real Analysis, 3rd edn. New York: Macmillan.
[158] Rudin, W. 1987. Real and Complex Analysis, 3rd edn. New York: McGraw-Hill.
[159] Rudin, W. 1991. Functional Analysis, 2nd edn. New York: McGraw-Hill.
[160] Saksman, E. 2007. An elementary introduction to Clark measures. Topics in Complex Analysis and Operator Theory.Málaga: University of Málaga, pp. 85–136.
[161] Sarason, D. 1965a. A remark on the Volterra operator. J. Math. Anal. Appl., 12, 244–246.Google Scholar
[162] Sarason, D. 1967. Generalized interpolation in H∞. Trans. Amer. Math. Soc., 127, 179–203.Google Scholar
[163] Sarason, D. 1988. Nearly invariant subspaces of the backward shift. In Contributions to Operator Theory and its Applications (Mesa, AZ, 1987). Operations Theory and Advanced Applications, vol. 35. Basel: Birkhäuser, pp. 481–493.
[164] Sarason, D. 1994a. Kernels of Toeplitz operators. In Toeplitz Operators and Related Topics (Santa Cruz, CA, 1992). Operations Theory Advanced Applications, vol. 71. Basel: Birkhäuser, pp. 153–164.
[165] Sarason, D. 1994b. Sub-Hardy Hilbert Spaces in the Unit Disk. University of Arkansas Lecture Notes in the Mathematical Sciences, 10. New York: John Wiley & Sons.
[166] Sarason, D. 2007. Algebraic properties of truncated Toeplitz operators. Oper. Matrices, 1(4), 491–526.Google Scholar
[167] Sarason, D. 1965b. On spectral sets having connected complement. Acta Sci. Math. (Szeged), 26, 289–299.Google Scholar
[168] Sarason, D. 1989. Exposed points in H1. I. In The Gohberg Anniversary Collection, Vol. II (Calgary, AB, 1988). Operations Theory Advanced Applications, vol. 41. Birkhäuser, Basel, pp. 485–496.
[169] Sedlock, N. 2010. Properties of truncated Toeplitz operators. Ph.D. thesis. ProQuest LLC, Ann Arbor, MI; Washington University in St. Louis.
[170] Sedlock, N. 2011. Algebras of truncated Toeplitz operators. Oper. Matrices, 5(2), 309–326.Google Scholar
[171] Shapiro, H. S. 1964. Weakly invertible elements in certain function spaces, and generators in l1. Michigan Math. J., 11, 161–165.Google Scholar
[172] Shapiro, H. S. 1968. Generalized analytic continuation. In Symposia on Theoretical Physics and Mathematics, Vol. 8 (Symposium, Madras, 1967).New York: Plenum, pp. 151–163.
[173] Shapiro, H. S. 1968/1969. Functions nowhere continuable in a generalized sense. Publ. Ramanujan Inst. No., 1, 179–182.Google Scholar
[174] Shapiro, J. H. 1993. Composition Operators and Classical Function Theory. Universitext: Tracts in Mathematics. New York: Springer-Verlag.
[175] Shimorin, S. 2001. Wold-type decompositions and wandering subspaces for operators close to isometries. J. Reine Angew. Math., 531, 147–189.Google Scholar
[176] Shirokov, N.A. 1978. Ideals and factorization in algebras of analytic functions that are smooth up to the boundary. Trudy Mat. Inst. Steklov., 130, 196–223.Google Scholar
[177] Shirokov, N.A. 1981. Division and multiplication by inner functions in spaces of analytic functions smooth up to the boundary. In Complex Analysis and Spectral Theory (Leningrad, 1979/1980). Lecture Notes inMathematics, vol. 864. Berlin: Springer, pp. 413–439.
[178] Simon, B. 1995. Spectral analysis of rank one perturbations and applications. In Mathematical Quantum Theory. II. Schrödinger Operators (Vancouver, BC, 1993). CRM Proceedings Lecture Notes, vol. 8. Providence, RI: American Mathematical Society, pp. 109–149.
[179] Simon, B. 2005. Orthogonal Polynomials on the Unit Circle.Part 1. American Mathematical Society Colloquium Publications, vol. 54. Providence, RI: American Mathematical Society.
[180] Simon, B. and Wolff, T. 1986. Singular continuous spectrum under rank one perturbations and localization for random Hamiltonians. Comm. Pure Appl. Math., 39(1), 75–90.Google Scholar
[181] Singer, I. 1970. Bases in Banach Spaces. I. New York: Springer-Verlag.
[182] Stegenga, D.A. 1980. Multipliers of the Dirichlet space. Illinois J. Math., 24(1), 113–139.Google Scholar
[183] Stothers, W.W. 1981. Polynomial identities and Hauptmoduln. Quart. J. Math. Oxford Ser. (2), 32(127), 349–370.Google Scholar
[184] Sz.-Nagy, B. 1953. Sur les contractions de l'espace de Hilbert. Acta Sci. Math. Szeged, 15, 87–92.Google Scholar
[185] Sz.-Nagy, B. and Foiaş, C. 1968. Dilatation des commutants d'opérateurs. C. R. Acad. Sci. Paris Sér. A-B, 266, A493–A495.Google Scholar
[186] Sz.-Nagy, B., Foias, C., Bercovici, H., and Kérchy, L. 2010. Harmonic Analysis of Operators on Hilbert Space, 2nd edn. Universitext. New York: Springer.
[187] Takenaka, S. 1925. On the orthonormal functions and a new formula of interpolation. Jap. J. Math., 2, 129–145.Google Scholar
[188] Teschl, G. 2009. Mathematical methods in quantum mechanics. Graduate Studies in Mathematics, vol. 99. Providence, RI: American Mathematical Society.
[189] Vol'berg, A. L. 1981. Thin and thick families of rational fractions. In Complex Analysis and Spectral Theory (Leningrad, 1979/1980). Lecture Notes in Mathematics, vol. 864. Berlin: Springer, pp. 440–480.
[190] Vol'berg, A. L., and Treil', S.R. 1986. Embedding theorems for invariant subspaces of the inverse shift operator. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 149(XV), 38–51, 186–187.Google Scholar
[191] Wang, X. and Gao, Z. 2009. A note on Aluthge transforms of complex symmetric operators and applications. Integral Equations Operator Theory, 65(4), 573–580.Google Scholar
[192] Wang, X. and Gao, Z. 2010. Some equivalence properties of complex symmetric operators. Math. Pract. Theory, 40(8), 233–236.Google Scholar
[193] Yabuta, K. 1971. Remarks on extremum problems in H1. Tôhoku Math. J. (2), 23, 129–137.Google Scholar
[194] Zagorodnyuk, S. M. 2010. On a J-polar decomposition of a bounded operator and matrix representations of J-symmetric, J-skew-symmetric operators. Banach J. Math. Anal., 4(2), 11–36.Google Scholar
[195] Zhu, S. and Li, C. G. 2013. Complex symmetric weighted shifts. Trans. Amer. Math. Soc., 365(1), 511–530.Google Scholar
[196] Zhu, S., Li, C. G., and Ji, Y.Q. 2012. The class of complex symmetric operators is not norm closed. Proc. Amer. Math. Soc., 140(5), 1705–1708.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Stephan Ramon Garcia, Pomona College, California, Javad Mashreghi, Université Laval, Québec, William T. Ross, University of Richmond, Virginia
  • Book: Introduction to Model Spaces and their Operators
  • Online publication: 05 May 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316258231.015
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Stephan Ramon Garcia, Pomona College, California, Javad Mashreghi, Université Laval, Québec, William T. Ross, University of Richmond, Virginia
  • Book: Introduction to Model Spaces and their Operators
  • Online publication: 05 May 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316258231.015
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Stephan Ramon Garcia, Pomona College, California, Javad Mashreghi, Université Laval, Québec, William T. Ross, University of Richmond, Virginia
  • Book: Introduction to Model Spaces and their Operators
  • Online publication: 05 May 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316258231.015
Available formats
×