We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
It has been twelve years since our article “Women in Computer Science: No Shortage Here!” (Othman and Latih, 2006) was published. It is disheartening that after more than a decade, gender disparity in computer science (CS) is still an issue. Among important findings of our previous study is that young Malaysian females and males have a markedly different attitude toward science and mathematics compared with their Western counterparts. CS and information technology (IT) is not viewed as a masculine field by young Malaysians, which is a key reason why this nation does not encounter the problem of too few females being interested in pursuing a degree in CS/IT.
Historically, it is known that women had an important role in computing. History lessons on computer science narrate that women were some of the first software engineers until technology and practices changed the role of women as programmers.
Since Deng Xiaoping’s economic reforms starting in 1978, the Chinese government has continuously improved the basic laws and regulations that guarantee women’s economic rights and employment rights. Chinese women can participate equally in economic development, and enjoy the fruits of reform and development on an equal footing with men. In China (Aaltio and Huang, 2007), working women now account for 47.0% of the total labor force, higher than the world average of 40.8%. However, in the computing industry, the proportion of female practitioners in China is about 7% (Proginn and Juejin, 2017; Proginn, 2018), significantly lower than 17% in United States (Elizabeth, 2017). The problem of the small proportion of Chinese computing female practitioners should be remedied.
Latin America and the Caribbean is a vast area reaching two continents, North America and South America, and the islands in and around the Caribbean Sea. This region accounts for 8.6% of the world’s population (UNESCO, 2016). Geographically, Latin America and the Caribbean commences in North America at the United States and Mexico border and terminates in South America at Tierra del Fuego in Chile. The Caribbean includes countries, dependencies, and territories in and around the Caribbean Sea. Latin America and the Caribbean includes thirty-three countries and thirteen dependencies and/or territories. Within Latin America are the geographically recognized larger sub-regions of North America, Central America, and South America. The Caribbean includes nine sub-regions. Within the Caribbean is the Caribbean Community (CARICOM), which is comprised of a grouping of twenty countries, all island states, but does not include all countries within the Caribbean (www.caricom.org).
This chapter focuses on five countries, assessing the economic, cultural, infrastructural, and policy factors influencing women’s ability to enter the IT workforce. The National Assessments on Gender, Science, Technology and Innovation, coordinated by Women in Global Science and Technology (WISAT), is a cross-national research project analyzing country-level data to assess the readiness for and participation of girls and women in a global world defined by knowledge. The assessments look at health, social status, safety and security, economic status, resources, agency, and opportunity and capability dimensions of women’s lives in the context of an enabling policy environment, in order to assess the implications for and outcomes related to women’s participation in knowledge-related sectors, decision-making, and education. Recently, five national studies were undertaken in East and West Africa – Ethiopia, Kenya, Rwanda, Senegal, and Uganda. These studies found the economic, policy, and cultural factors affecting women’s participation in the IT workforce to vary considerably. While there are commonalities, these differences in national context result in different patterns of female participation in the STEM labor force.
Graduation trends in the last twenty-five years show that majors in computing-related fields have had low popularity among female students in the United States and Europe. For instance, in 2015, US women earned a mere 18% (9,209) of bachelor’s degrees in computer science (CS), which is less than the number earned in 1985 (14,431) (National Science Board, 2018). Similarly, in Europe women represented 16.7% of total graduates in information communication technology (ICT) in 2016 (European Commission, 2018). Low participation of women in computing education has been a pressing problem in Western countries. Gender diversity in computing is imperative as it will increase the skilled labor force pool, enrich innovation, and foster social justice. Most importantly, there is a high demand for people with computing skills. The number of ICT specialists in the European Union grew by 36.1% from 2007 to 2017, more than ten times as high as the increase (3.2%) for total employment (Eurostat, 2018). Employment in computing-related occupations in the United States is projected to grow 13% from 2016 to 2026, which is faster than the average for all occupations. This is expected to add about 557,100 new jobs (US Department of Labor, 2017). Often such growing needs are met by foreign skilled workers, mostly from Asian countries. It is, therefore, no surprise that a number of governmental and corporate initiatives exist in the United States and in Europe to empower students with the computing skills to thrive in a global economy.
Diverse perspectives coming from a diversity of people in the information technology (IT) profession yields benefits both in terms of products and services provided to consumers and in terms of employment opportunities presented to those who would work in this field (Trauth et al., 2006a). In this regard the gender imbalance presents an important challenge to researchers, teachers, and employers. Overcoming the barriers to greater diversity in the field also requires an understanding of the context in which they occur and can be addressed.
In 1882 renowned English scientist Charles Darwin announced that “[t]he chief distinction in the intellectual powers of the two sexes is shewn by man’s attaining to a higher eminence, in whatever he takes up, than can woman” (Darwin, 1871, p. 564). This belief in women’s inferior intellect was not new, but as an eminent scientist, Darwin’s proclamations held great sway in his time and place – and since – although nowadays few would admit to this. Or would they? Jump forward to 1992 and we see the arrival of John Gray’s Men Are from Mars, Women Are from Venus, which became a phenomenal best-seller (selling more than fifteen million copies globally), and continues to be so. While the book is not as forthright in saying women’s intellect is inferior, it does explain the many ways in which men and women differ – including the ways they think (Gray, 1992).
Dr. Black is perhaps most well known for initiating – and succeeding – in “saving Bletchley Park” (which is also the title of her book). Bletchley Park was a top-secret center for the famous World War II code breakers, including many women, whose work was credited with shortening the war by two to four years. The center deteriorated rapidly after the war and would most probably have been dismantled if not for the fundraising efforts of Dr. Black and her supporters. Bletchley Park is now a thriving visitors’ center and is co-housed with the UK National Museum of Computing. Dr. Black’s initial involvement with Bletchley Park inspired her to conduct an oral history project to capture the memories of the women who worked there. She met several of the surviving women code breakers; some shared their stories with her, others never revealed the details of their highly secret work.
Since 2006–2007, I have interviewed numerous women in technology careers to understand their motivation for choosing their careers and their experiences in the technical workforce. While the intent of an initial study that emerged from some of these interviews (Adya, 2008) was to compare and contrast the experiences of South Asian and American women in the US workforce, the stories of some of these women were more broadly impactful. Some of these women were inspiring in how they overcame barriers and eventually succeeded in information technology (IT) careers, and others in how they changed the course of their lives, sometimes away from IT careers and into others that they felt they could grow into.
Previous research has revealed surprising cross-national differences in the gender composition of information and communication technology (ICT) fields. In 2001, for example, women’s representation in ICT degree programs was weakest in the world’s most affluent and reputably gender-progressive societies (Charles and Bradley, 2006). Historical trends in the ICT sectors of affluent democracies seem, moreover, to have gone in the direction of more, not less, gender segregation. Despite dramatic increases in female labor force participation and university attendance, US women’s share of bachelor’s degrees in computer science decreased from 28% to 18% between 2000 and 2015 (NSF, 2018, appendix 2-21), with similar declines documented in Europe for the 1990s (Schinzel, 2002).
Prior to the 2010 World Classical Tamil Conference in Coimbatore, a music video called “Semmozhiyaan Tamil Mozhiyaan” made its way to television networks across Tamil Nadu. The video was shot by Gautham Menon and had music composed by A. R. Rehman – both leading figures in the Tamil film industry at the time, with lyrics penned by the then chief minister and Dravida Munnetra Kazhagam (DMK) headman Muthuvl Karunanidhi. The song was intended as an anthem for the conference, but soon started being referred to as the state anthem.