We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This Element looks at the very beginning of the philosophy of mathematics in Western thought. It covers the first reflections on attempts to untie mathematics from its practical usage in administration, commerce, and land-surveying and discusses the first ideas to see mathematical structures as constituents underlying the physical world in the Pythagoreans. The first two sections focus on the epistemic status of mathematical knowledge in relation to philosophical knowledge and on the various ontological positions ancient Greek philosophers in early and classical times ascribe to mathematical objects – from independent and separate entities to mere abstractions and idealisations. Section 3 discusses the paradigmatic role mathematical deductions have played for philosophy, the role of mathematical diagrams, and mathematical methods of interest for philosophers. Section 4, finally, investigates a couple of individual concepts that are fundamental for both philosophy and mathematics, such as infinity.
The aim of this Element is to provide an overview of abstractionism in the philosophy of mathematics. The authors distinguish between mathematical abstractionism, which interprets mathematical theories on the basis of abstraction principles, and philosophical abstractionism, which attributes a philosophical significance to mathematical abstractionism. They then survey the main semantic, ontological, and epistemological theses that are associated with philosophical abstractionism. Finally, the authors suggest that the most recent developments in the debate pull abstractionism in different directions.
This Element lays the foundation, introduces a framework, and sketches the program for a systematic study of mathematical notations. It is written for everyone who is curious about the world of symbols that surrounds us, in particular researchers and students in philosophy, history, cognitive science, and mathematics education. The main characteristics of mathematical notations are introduced and discussed in relation to the intended subject matter, the language in which the notations are verbalized, the cognitive resources needed for learning and understanding them, the tasks that they are used for, their material basis, and the historical context in which they are situated. Specific criteria for the design and assessment of notations are discussed, as well as ontological, epistemological, and methodological questions that arise from the study of mathematical notations and of their use in mathematical practice.
This Element outlines and defends an account of analyticity according to which mathematics is, for the most part, analytic. The author begins by looking at Quine's arguments against the concepts of analyticity. He shows how Quine's position on analyticity is related to his view on explication and shows how this suggests a way of defining analyticity that would meet Quine's own standards for explication. The author then looks at Boghossian and his distinction between epistemic and metaphysical accounts of analyticity. Here he argues that there is a straightforward way of eliminating the confusion Boghossian sees with what he calls metaphysical accounts. The author demonstrates that the epistemic dimension of his epistemic account is almost entirely superfluous. The author then discusses how analyticity is related to truth, necessity, and questions of ontology. Finally, he discusses the vagueness of analyticity and also the relation of analyticity to the axiomatic method in mathematics.
Discussing various versions of two medieval arguments for the impossibility of infinity, this Element sheds light on early stages of the evolution of the notion of INFINITIES OF DIFFERENT SIZES. The first argument is called 'the Equality Argument' and relies on the premise that all infinities are equal. The second argument is called 'the Mapping Argument' and relies on the assumption that if one thing is mapped/ superposed upon another thing and neither exceeds the other, the two things are equal to each other. Although these arguments were initially proposed in the context of discussions against the possibility of infinities, they have played pivotal roles in the historical evolution of the notion of INFINITIES OF DIFFERENT SIZES.
This Element discusses the philosophical roles of definitions in the attainment of mathematical knowledge. It first focuses on the role of definitions in foundational programs, and then examines their major varieties, both as regards their origins, their potential epistemic roles, and their formal constraints. It examines explicit definitions, implicit definitions, and implicit definitions of primitive terms, these latter being further divided into axiomatic and abstractive. After discussing elucidations and explications, various ways in which definitions can yield mathematical knowledge are surveyed.
Husserl's Philosophy of Mathematical Practice explores the applicability of the phenomenological method to philosophy of mathematical practice. The first section elaborates on Husserl's own understanding of the method of radical sense-investigation (Besinnung), with which he thought the mathematics of his time should be approached. The second section shows how Husserl himself practiced it, tracking both constructive and platonistic features in mathematical practice. Finally, the third section situates Husserlian phenomenology within the contemporary philosophy of mathematical practice, where the examined styles are more diverse. Husserl's phenomenology is presented as a method, not a fixed doctrine, applicable to study and unify philosophy of mathematical practice and the metaphysics implied in it. In so doing, this Element develops Husserl's philosophy of mathematical practice as a species of Kantian critical philosophy and asks after the conditions of possibility of social and self-critical mathematical practices.
A proof of a theorem can be said to be pure if it draws only on what is 'close' or 'intrinsic' to that theorem. In this Element we will investigate the apparent preference for pure proofs that has persisted in mathematics since antiquity, alongside a competing preference for impurity. In Section 1, we present two examples of purity, from geometry and number theory. In Section 2, we give a brief history of purity in mathematics. In Section 3, we discuss several different types of purity, based on different measures of distance between theorem and proof. In Section 4 we discuss reasons for preferring pure proofs, for the varieties of purity constraints presented in Section 3. In Section 5 we conclude by reflecting briefly on purity as a preference for the local and how issues of translation intersect with the considerations we have raised throughout this work.
This Element introduces a young field, the 'philosophy of mathematical practice'. We first offer a general characterisation of the approach to the philosophy of mathematics that takes mathematical practice seriously and contrast it with 'mathematical philosophy'. The latter is traced back to Bertrand Russell and the orientation referred to as 'scientific philosophy' that was active between 1850 and 1930. To give a better sense of the field, the Element further contains two examples of topics studied, that of mathematical structuralism and visual thinking in mathematics. These are in part presented from a methodological point of view, focussing on mathematics as an activity and questions related to how mathematics develops. In addition, the Element contains several examples from mathematics, both historical and contemporary , to illustrate and support the philosophical points.
Many philosophers are aware of the paradoxes of set theory (e.g. Russell's paradox). For many people, these were solved by the iterative conception of set which holds that sets are formed in stages by collecting sets available at previous stages. This Element will examine possibilities for articulating this solution. In particular, the author argues that there are different kinds of iterative conception, and it's open which of them (if any) is the best. Along the way, the author hopes to make some of the underlying mathematical and philosophical ideas behind tricky bits of the philosophy of set theory clear for philosophers more widely and make their relationships to some other questions in philosophy perspicuous.
This Element is a systematic study of the question of whether classes are composed of further parts. Mereology is the theory of the relation of part to whole, and we will ask how that relation applies to classes. One reason the issue has received attention in the literature is the hope that a clear picture of the mereology of classes may provide further insights into the foundations of set theory. We will consider two main perspectives on the mereology of classes on which classes are indeed composed of further parts. They, however, disagree as to the identity of those parts. Each perspective admits more than one implementation, and one of the purposes of this work is to explain what is at stake with each choice.
Mathematical pluralism is the view that there is an irreducible plurality of pure mathematical structures, each with their own internal logics; and that qua pure mathematical structures they are all equally legitimate. Mathematical pluralism is a relatively new position on the philosophical landscape. This Element provides an introduction to the position.
This Element looks at the contemporary debate on the nature of mathematical rigour and informal proofs as found in mathematical practice. The central argument is for rigour pluralism: that multiple different models of informal proof are good at accounting for different features and functions of the concept of rigour. To illustrate this pluralism, the Element surveys some of the main options in the literature: the 'standard view' that rigour is just formal, logical rigour; the models of proofs as arguments and dialogues; the recipe model of proofs as guiding actions and activities; and the idea of mathematical rigour as an intellectual virtue. The strengths and weaknesses of each are assessed, thereby providing an accessible and empirically-informed introduction to the key issues and ideas found in the current discussion.
The Euclidean Programme embodies a traditional sort of epistemological foundationalism, according to which knowledge – especially mathematical knowledge – is obtained by deduction from self-evident axioms or first principles. Epistemologists have examined foundationalism extensively, but neglected its historically dominant Euclidean form. By contrast, this book offers a detailed examination of Euclidean foundationalism, which, following Lakatos, the authors call the Euclidean Programme. The book rationally reconstructs the programme's key principles, showing it to be an epistemological interpretation of the axiomatic method. It then compares the reconstructed programme with select historical sources: Euclid's Elements, Aristotle's Posterior Analytics, Descartes's Discourse on Method, Pascal's On the Geometric Mind and a twentieth-century account of axiomatisation. The second half of the book philosophically assesses the programme, exploring whether various areas of contemporary mathematics conform to it. The book concludes by outlining a replacement for the Euclidean Programme.
This Element, written for researchers and students in philosophy and the behavioral sciences, reviews and critically assesses extant work on number concepts in developmental psychology and cognitive science. It has four main aims. First, it characterizes the core commitments of mainstream number cognition research, including the commitment to representationalism, the hypothesis that there exist certain number-specific cognitive systems, and the key milestones in the development of number cognition. Second, it provides a taxonomy of influential views within mainstream number cognition research, along with the central challenges these views face. Third, it identifies and critically assesses a series of core philosophical assumptions often adopted by number cognition researchers. Finally, the Element articulates and defends a novel version of pluralism about number concepts.
This Element addresses the viability of categoricity arguments in philosophy by focusing with some care on the specific conclusions that a sampling of prominent figures have attempted to draw – the same theorem might successfully support one such conclusion while failing to support another. It begins with Dedekind, Zermelo, and Kreisel, casting doubt on received readings of the latter two and highlighting the success of all three in achieving what are argued to be their actual goals. These earlier uses of categoricity arguments are then compared and contrasted with more recent work of Parsons and the co-authors Button and Walsh. Highlighting the roles of first- and second-order theorems, of external and internal theorems, the Element concludes that categoricity arguments have been more effective in historical cases that reflect philosophically on internal mathematical matters than in recent questions of pre-theoretic metaphysics.
This Element explores the relationship between phenomenology and mathematics. Its focus is the mathematical thought of Edmund Husserl, founder of phenomenology, but other phenomenologists and phenomenologically-oriented mathematicians, including Weyl, Becker, Gödel, and Rota, are also discussed. After outlining the basic notions of Husserl's phenomenology, the author traces Husserl's journey from his early mathematical studies. Phenomenology's core concepts, such as intention and intuition, each contributed to the emergence of a phenomenological approach to mathematics. This Element examines the phenomenological conceptions of natural number, the continuum, geometry, formal systems, and the applicability of mathematics. It also situates the phenomenological approach in relation to other schools in the philosophy of mathematics-logicism, formalism, intuitionism, Platonism, the French epistemological school, and the philosophy of mathematical practice.
The Element begins by claiming that Imre Lakatos (1922–74) in his famous paper 'Proofs and Refutations' (1963–64) was the first to introduce the historical approach to philosophy of mathematics. Section 2 gives a detailed analysis of Lakatos' ideas on the philosophy of mathematics. Lakatos died at the age of only 51, and at the time of this death had plans to continue his work on philosophy of mathematics which were never carried out. However, Lakatos' historical approach to philosophy of mathematics was taken up by other researchers in the field, and Sections 3 and 4 of the Element give an account of how they developed this approach. Then Section 5 gives an overview of what has been achieved so far by the historical approach to philosophy of mathematics and considers what its prospects for the future might be.
Our best scientific theories explain a wide range of empirical phenomena, make accurate predictions, and are widely believed. Since many of these theories make ample use of mathematics, it is natural to see them as confirming its truth. Perhaps the use of mathematics in science even gives us reason to believe in the existence of abstract mathematical objects such as numbers and sets. These issues lie at the heart of the Indispensability Argument, to which this Element is devoted. The Element's first half traces the evolution of the Indispensability Argument from its origins in Quine and Putnam's works, taking in naturalism, confirmational holism, Field's program, and the use of idealisations in science along the way. Its second half examines the explanatory version of the Indispensability Argument, and focuses on several more recent versions of easy-road and hard-road fictionalism respectively.
This Element answers four questions. Can any traditional theory of scientific explanation make sense of the place of mathematics in explanation? If traditional monist theories are inadequate, is there some way to develop a more flexible, but still monist, approach that will clarify how mathematics can help to explain? What sort of pluralism about explanation is best equipped to clarify how mathematics can help to explain in science and in mathematics itself? Finally, how can the mathematical elements of an explanation be integrated into the physical world? Some of the evidence for a novel scientific posit may be traced to the explanatory power that this posit would afford, were it to exist. Can a similar kind of explanatory evidence be provided for the existence of mathematical objects, and if not, why not?