To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In the production of alumina (Al2O3) from clays by acid leaching, thermal activation by calcination is applied widely as a pre-treatment to improve the dissolution of aluminum. Previous studies have focused only on the thermal behavior of high-purity kaolinite and pyrophyllite, individually. However, thermal activation of complex clay ores containing several silicate minerals and their effect on aluminum extraction have not been studied. The purpose of the present study was to characterize the thermal behavior of a clay ore containing mainly pyrophyllite (Al2Si4O10(OH)2), kaolinite (Al2Si2O5(OH)4), muscovite (KAl2(AlSi3O10)(OH)2), quartz (SiO2), and kyanite (Al2SiO5) from the Pütürge clay deposits (Malatya, Turkey) for possible use in alumina (Al2O3) production by acid leaching. The ore and its calcination products obtained at various temperatures were characterized with respect to their mineral paragenesis, crystal structure, surface morphology, and thermal, calorimetric, and aluminum dissolution properties in order to understand the changes that occurred. Aluminum recovery in the leach solution increased in direct proportion to the dehydroxylation degree (Dtg) of the ore as the calcination temperature increased to 900°C. A maximum aluminum extraction of 90.57% was achieved by leaching of the product from calcination at 900°C. Aluminum extraction decreased sharply above that temperature, even though Dtg increased a little. By increasing the calcination temperature; the structures of pyrophyllite, kaolinite, and muscovite were destroyed by dehydroxylation, resulting in the exfoliation of the mineral layers, thus, a mixture of dehydroxylated phases formed. Depending mainly on the temperature range at which each of the dehydroxylated phases is durable, aluminum could be leached to some extent. The sharp decrease in the extraction of aluminum, iron, and potassium at higher temperatures was attributed to compaction of previously exfoliated layers of the minerals through re-crystallization to form mullite-like structures which seemed insensitive to acid attack during the leaching.
The Bursa-Orhaneli and Keles-Harmanalan coal deposits were developed in swampy and fluvial-lacustrine environments in western Anatolia under the E–W-trending graben zone during the Neogene. The present study aimed to determine the mineralogical and geochemical properties of clays interlayering the coal seams to define the origin of clay minerals, in particular, smectite. These deposits, comprising argillaceous sediment, marl, coal seam, mudstone, organic-rich shale, and sandstone, were deposited in a lacustrine environment accompanied by volcanogenic materials. The characteristics of sediments and their parent rocks were examined using X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, palynology, and chemical analyses. The association of abundant smectite with quartz, amphibole, accessory chlorite, and a decrease in feldspar in fluvial-lacustrine sediments compared to those in the smectite accompanied by feldspar and volcanic glass and the absence of quartz and amphibole in the pyroclastic units suggest that smectite had detrital and authigenic origins. Flaky smectite shows either detrital, irregularly outlined coating and filling pores of terrigenous sediments or in situ precipitation edging resorbed feldspar and devitrified volcanic glass. Chemical analyses of the smectite-rich fraction show montmorillonite compositions with an average structural formula of: (Ca0.42Na0.25K0.08)(Al2.76Fe0.47Mg0.59Ti0.07Mn0.002)(Si7.65Al0.35)O20(OH)4.
The positive correlation of Al2O3 vs. TiO2 and K2O vs. Rb may be related to the abundant detrital input. Feldspar and biotite were replaced by illite during diagenesis.
An increase in the Ni/Co and V/(V + Ni) ratios in the altered units also suggest oxic, suboxic to anoxic conditions, under the control of a dry, warm to subtropical climate in fresh water and lakes during the Late Eocene to Middle Miocene. The slight enrichment of light rare earth elements (LREE) compared to heavy rare earth elements (HREE) with positive Eu and positive/negative Ce anomalies reflect fractional crystallization of feldspar. The δ18O and δD values of smectite and illite fractions and the wide range of δ34S isotope values (–1.5 to 15‰) for pyrite and chalcopyrite associated with coal indicate a signature of both diagenetic and partial hydrothermal origin.
The total specific surface area (TSSA) and smectitic layer charge (Qs) calculated from the structural formulae and unit-cell dimensions of 12 pure smectite samples were used as a reference in the design and evaluation of TSSA and Qs measurement techniques based on cation exchange capacity (CEC), H2O retention at 47% RH, and ethylene glycol monoethyl ether (EGME) retention. A thermogravimetric analysis-mass spectrometry (TGA-MS) technique was used to study the release of H2O from smectite on heating, and to introduce a correction for H2O remaining in the smectite after heating to 110°C, because the sample weight at this temperature has been used routinely as a reference in CEC and EGME sorption measurements. A temperature of 200°C was found to be the optimum reference for such measurements.
A good agreement between Qs from the structural formula and from CEC was obtained when this correction was applied. The TSSA of smectite was measured with similar accuracy (mean error of ±5–7%) by three techniques: (1) using mean H2O coverage; (2) using mean EGME coverage; and (3) using a combination of H2O coverage and CEC. A reduction of the mean error from 5–7% to 4% can be obtained by averaging these measurements, and a further reduction to 3% by introducing corrections for the dependence of H2O and EGME coverage on layer charge. The study demonstrates that Ca2+-smectite samples at 47% RH have H2O contents corresponding to 88–107% of the theoretical mass of a monolayer and offers an explanation of this variation.
Given the peculiarly linguistic approach that contemporary philosophers use to apply St. Thomas Aquinas’s arguments on the immateriality of the human soul, this paper will present a Thomistic-inspired evaluation of whether artificial intelligence/machine learning (AI/ML) chatbots’ composition and linguistic performance justify the assertion that AI/ML chatbots have immaterial souls. The first section of the paper will present a strong, but ultimately crucially flawed argument that AI/ML chatbots do have souls based on contemporary Thomistic argumentation. The second section of the paper will provide an overview of the actual computer science models that make artificial neural networks and AI/ML chatbots function, which I hope will assist other theologians and philosophers writing about technology, The third section will present some of Emily Bender’s and Alexander Koller’s objections to AI/ML chatbots being able to access meaning from computational linguistics. The final section will highlight the similarities of Bender’s and Koller’s argument to a fuller presentation of St. Thomas Aquinas’s argument for the immateriality of the human soul, ultimately arguing that the current mechanisms and linguistic activity of AI/ML programming do not constitute activity sufficient to conclude that they have immaterial souls on the strength of St. Thomas’s arguments.
The layer charge density (LCD) of montmorillonite represents the permanent negative charge, its most important property. The LCD can be determined by two different methods, the structural formula method(SF M) and the alkylammonium method (AAM). Other methods of determining the LCD are calibrated against one or the other of these. The results of the two methods differ systematically: SFM values are larger than AAM values and the difference increases with increasing layer charge density. In the present study, the critical parameters of both methods were considered quantitatively in order to identify the most likely reason for the systematic difference. One particularly important argument against the validity of the SFM is that typical SFM values correspond to unrealistically large CEC values that have never been reported. In addition, SFM does not consider the variable charge which causes cations to be adsorbed to the outer surface (at pH >4). In contrast to minor constituents, which can of course also affect SFM values, the variable charge can explain only part of the systematic difference. The exchange of pure smectite samples with both Cu-trien andalkyla mmonium revealedthe presence of non-exchangeable, nonstructural cations (Na, K, Ca). These cations, together with 10% (or more) variable charge, may explain the differences in LCD values. The non-exchangeable, non-structural cations could stem from undetected traces of feldspar or volcanic glass. The present samples indicated that the systematic difference in LCD values between the two methods is related to the amount of non-exchangeable, non-structural cations only, indicating that the two LCD methods probe different features of smectites. Using the SFM on pure smectite provides a value for the total number of charges (permanent with andwithout fixed (= non-exchangeable, non-structural) cations plus variable charge). The AAM, on the other hand, provides the charge density of the exchangeable cations (without variable charge).
Clay minerals in chilled or brecciated margins (altered glass) and massive inner crystalline parts (mesostasis) of three basalt-hawaiite bodies from Mururoa Atoll (French Polynesia) have been studied in order to compare their chemical and mineralogical compositions. Polyphase assemblages comprise di- and trioctahedral phases, both of which consist of non-expandable layers (chlorite, celadonite) and two types of expandable layers (saponite and Fe-rich smectite or ‘nontronite-like’ material). The presence of the Fe-rich clays is supported by the presence of the X-ray diffraction 060 peak at 1.51–1.52 Å and of the infrared absorption bands at 875 and 822 cm−1 (Fe3+-Al-OH and Fe3+-Fe3+-OH groups, respectively). The chemical composition of the Fe-rich smectites does not fit with the theoretical nontronite field. The layer charge averages 1 per Si4O10 making these Fe-rich smectites close to ‘celadonite-type’ clays. This could explain the presence of mixed-layer celadonite-smectite. Plotted in an M+/4Si vs. Fe/sum octahedral cations diagram, the chemical compositions of clay minerals in the mesostasis form a continuous field limited by the celadonite-high-charge nontronite-like smectite and chlorite end-members. The clay assemblages are different from those formed in hydrothermal systems or low-grade metamorphic conditions which are characterized by the sequence: saponite → randomly ordered chlorite-smectite mixed-layered minerals (MLMs) → corrensite → chlorite. The systematic presence of Fe-rich clays either in the altered chilled margins or in the massive inner parts of the basalt-hawaiite bodies (high-charge nontronite-like smectite and mixed-layer nontronite-celadonite) makes the Mururoa sea-mount a potential terrestrial analogue for Mars surface exploration.
Ceramic clays are among the most complicated of ceramic systems because of the very intricate relationship between the behavior of minerals during ceramic processing and their modifications during heating. A major challenge is to predict the phase changes in clay ceramics. The aims of this study were to establish reference data of ceramic products that can be formed based on the mineralogical compositions of the local raw materials. These data, in turn, can be compared with archeological ceramics in order to study their origins.
The mineralogical compositions and modifications during firing (550–1100°C under oxidizing conditions) of seven clayey materials sampled from the main clay deposits of northern Morocco were evaluated by X-ray powder diffraction. Two groups of clays were distinguished according to the type of neoformed high-temperature minerals: non-calcareous clays and calcareous clays. For the non-calcareous raw materials, spinel was produced at 950°C. Cristobalite and mullite were formed at temperatures in excess of 1000°C from clays that contain illite, kaolinite, and chlorite. In clays containing vermiculite and large amounts of chlorite, hematite was formed at temperatures in excess of 950°C. Firing of calcareous clays at temperatures >950°C yielded Ca-silicates (diopside, gehlenite and wollastonite), spinel, cristobalite, hematite, and feldspars. Mullite may also form in the calcareous clay products when the carbonate content exceeds 10%.
An organophilic bentonite was prepared by means of a reaction of natural Na-montmorillonite with trimethyldococylammonium which has an especially long n-alkyl chain. The addition of trimethyldococylammonium to montmorillonite was in the range 0.25–3.0 times the cation exchange capacity (CEC) of the clay (i.e. 0.23–2.82 mmol/g clay). The particle morphology in organic liquid suspensions of organoclay complexes was studied by measuring the viscosity based on Eyring’s rate process and Robinson’s relative sediment volume. In toluene, montmorillonite with 1.17 mmol/g clay trimethyldococylammonium (1.25 times the CEC) had the largest specific gel volume, relative sediment volume, and K-factor. The results of the stoichiometry for trimethyldococylammonium-montmorillonite show that practically all of the quaternary ammonium was adsorbed to montmorillonite. Maximum half widths of 001 reflections from X-ray diffraction patterns were obtained in the range 0.74–1.17 mmol/g clay, indicating a disordered arrangement of the organic cation molecules intercalated between the layers. Appreciable shifts to lower-frequency regions in the Fourier transform infrared absorption spectra as a result of CH2-stretching vibrations were observed with increasing amounts of the organic cation. When increasing the amount of organic cation added to the clay from 0.94 to 1.41 mmol/g clay, a large shift occurred to the lower-frequency side, approaching the frequency of the organic cation alone. This indicates that the interaction between adjacent hydrocarbon chains becomes progressively stronger, due to van der Waals attraction, with increases in the amount of organic cation. Interactions of the alkyl chains in trimethyldococylammonium-montmorillonite complexes with irregularly distributed and randomly arranged alkyl chains between the silicate layers were weak, and, as a result, solvation with external organic liquids occurred and gel formation developed through macroscopic swelling of the organoclay.
The efficient separation of hexane isomers from the light naphtha fraction is a significant challenge in the petrochemical industry. 5A zeolite adsorbent is used commercially to sieve alkane isomers. In this study, 5A zeolites were synthesized using a low-cost natural clay mineral precursor, i.e. palygorskite (PAL), with the addition of crystallization directing agent (CDA). By varying the mass ratio of CDA/deionized water, 5A zeolites were obtained as CDA-5%, CDA-7.5%, and CDA-10%. All products were submicron particles with an average particle size of 400–800 nm. A sieving test of CDA-induced 5A zeolites was carried out on hexane adsorbates including n-hexane (nHEX), 2-methylpentane (2MP), and 3-methylpentane (3MP). According to vapor-phase batch adsorption experiments, a significant equilibrium amount (0.149 g/g) of nHEX and only 0.0321 g/g 2MP and 0.0416 g/g 3MP were adsorbed on the 5A zeolite product with CDA-5%. The dynamic adsorption performance of 5A zeolite (CDA-5%) was evaluated by breakthrough curves of binary mixtures of nHEX/2MP and nHEX/3MP. Palygorskite 5A (PAL 5A) zeolite achieved maximum dynamic adsorption capacities of nHEX (0.16 g/g in both cases) at 200°C and 1.2 MPa total pressure. This work provided an economic alternative for the synthesis of 5A zeolites using natural clay minerals instead of chemical raw materials.
Al-hydroxy intercalated clays (ALHICs) obtained from different parent clays were used to investigate the interactions between oligomers and clay surface layers.
The thermal stability of ALHICs obtained from natural, Cs-, Ca-, Ba-, Fe-, Cu- or Ce-montmorillonites has been investigated by studying the relationship between basal spacing and calcination temperature. X-ray diffraction has shown that the basal spacing of ALHICs obtained from Cu-montmorillonite calcined at 550°C is 13.4 Å, different from basal spacings of ALHICs obtained from Fe-montmorillonite (16.0 Å) and other parent clays (16.7 Å). Thermograms for AlHICs obtained from natural, Fe- and Ce-montmorillonites displayed distinct steps at 225 and 650°C, attributed to the dehydration of Al13 oligomers, and the dehydroxylation of the surface layer, respectively. By contrast, thermograms of ALHICs obtained from Cu-montmorillonite displayed one step between 250 and 700°C for both dehydration and dehydroxylation. Mössbauer parameters showed that Fe3+ octahedra in octahedral sheets are distorted in pillared interlayered clay (PILC) obtained from Cu-montmorillonite and undistorted in that obtained from Fe-montmorillonite. The difference in thermal stability for the various ALHICs is attributed to the retention of some of the original cations after intercalation with Al13 oligomers, which induces several interactions between the oligomers and the clay surface layers.
The compressibility behavior of clays is governed by the electrical double layer formed around the clay particles. The Gouy-Chapman diffuse double layer theory is often utilized to predict the compressibility behavior of clay minerals. The theory does not consider the effect of the size of the cations, however, and thus predicts unrealistically small void ratios for compacted bentonites under large mechanical pressures expected in high-level nuclear waste-repository applications. In this study, the Stern layer was introduced to incorporate the cation size effect in the prediction of the compressibility behavior of bentonites. The overall diffuse double-layer thickness at large pressures was much smaller than the initially assumed Stern layer thickness based on the exchangeable cation size for all the bentonites studied. A compressible Stern layer was, therefore, considered for the first time in the prediction of the compressibility behavior of bentonites. The compression behavior of the Stern layer under the applied loading is influenced by the ratio of the mid-plane to the Stern potential, which is dependent on the type and composition of the exchangeable cations on the clay surface. Stern layer compression was initiated when the potential ratio was in the range 0.65–0.75 for bentonites with various surface cation characteristics. The incorporation of cation size and a compressible Stern layer provided significant improvements over the existing models in predicting the compressibility behavior of bentonites over a wide pressure range. The compressibility data predicted by the proposed model showed very good agreement with the data measured for five bentonites from the literature in the pressure range 0.1–42 MPa.
The built form of asylums in Britain and the United States in the late eighteenth and early nineteenth centuries can be better understood when they are seen in relation to prison architecture, despite repeated statements in the contemporary sources as well as in the scholarly literature that asylums are non-prisons. Taking a wide view of the institutions and the people involved in designing and promoting them, this article revisits the insights of Erving Goffman and Michel Foucault, who proposed the carceral institution as a category encompassing both asylums and prisons — a category usually rejected by scholars of the asylum. Working across textual and architectural sources, I argue that the category does indeed have validity in the cases of Britain and the US between 1790 and 1850. From the beginning, however, there was resistance to the conflation of asylums and prisons, and some asylum designers deployed space, style and nomenclature to construct differentiation. Class is key: the wider the gap between an institution’s founders and its intended inmates, the more carceral it was in architecture and regime. I show how comparing modern building types requires close attention to their changing character; both asylums and prisons were undergoing radical reforms in the period, and it is crucial to determine precisely what version of the prison is being invoked when an asylum is deemed to be prison-like or not prison-like. I examine the floor plan as a rhetorical device, and interpret the significance of pristine geometrical abstraction on the one hand and familiar domestic conventions on the other. Even decisions about whether to name the architect involved, and whether to include floor plans in the institution’s publicity, have significance, as does the naming of things: when to call a room a cell or a chamber.
Serpentinites, which contain high concentrations of Cr and Ni, weather easily into layer silicates and are therefore a possible source of metal contamination in soils. In the present study three soil profiles formed on serpentinites in a paddy field in eastern Taiwan were investigated to understand pedogenic clay-mineral transformations and to determine the relationship between the mineralogical characteristics and labile Cr and Ni in the soil. To this end, physicochemical analyses, micromorphology, X-ray diffraction, and Fourier transform infrared spectroscopy were employed. Serpentine and chlorite were the dominant minerals in the soil parent material, with smaller amounts of pyroxene, amphibole, and talc. Progressive weathering and the release of cations from the parent material resulted in the pedogenic formation of smectite, vermiculite, and interstratified chlorite-vermiculite, demonstrated by their presence in all Ap and AC horizons but their absence from the C horizons. Serpentine, pyroxene, amphibole, and talc are proposed to be transformed to low-charge smectite, while chlorite transformed to vermiculite through an interstratified chlorite-vermiculite phase. The surface soils were enriched in oxalate-extractable Fe relative to the subsoils, which was probably generated by the artificial flooding and draining of the paddy soils. The artificial flooding, which typically releases Fe, may also drive the observed partial hydroxyl interlayering of smectite and incomplete interlayer OH sheets of chlorite. Labile Cr and Ni (extracted with 0.1 N HCl) ranging from 4.7 to 26.8 mg kg−1 and from 56 to 365 mg kg−1, respectively, increased significantly toward the surface soil, consistent with weathering. The heavy metals released may pose a threat to the environment as well as to human health by entering the food chain.
We performed Monte Carlo and molecular dynamics simulations to investigate the interlayer structure of a uranyl-substituted smectite clay. Our clay model is a dioctahedral montmorillonite with negative charge sites in the octahedral sheet only. We simulated a wide range of interlayer water content (0 mg H2O/g clay — 260 mg H2O/g clay), but we were particularly interested in the two-layer hydrate that has been the focus of recent X-ray absorption experiments. Our simulation results for the two-layer hydrate of uranyl-montmorillonite yield a water content of 160 mg H2O/g clay and a layer spacing of 14.66 Å. Except at extremely low water content, uranyl cations are oriented nearly parallel to the surface normal in an outer-sphere complex. The first coordination shell consists of five water molecules with an average U-O distance of 2.45 Å, in good agreement with experimental data. At low water content, the cations can assume a perpendicular orientation to include surface oxygen atoms in the first coordination shell. Our molecular dynamics results show that complexes translate within the clay pore through a jump diffusion process, and that first-shell water molecules are exchangeable and interchangeable.
Geologic mapping and crystal-chemical analysis of Middle-Upper Miocene volcanics in the Sandıklı-Afyonkarahisar region of Turkey, coupled with published zeolite analyses has revealed that western Turkey hosts unique zeolitic mineral assemblages with distinct paragenetic sequences. The present investigation focused on pyroclastic deposits, including low to intermediate potassic trachytic/trachyandesitic tuffs (LPT) and high potassic tephriphonolitic, tephritic, and trachybasaltic tuffs (HPT), each of which contains various styles of zeolites. Optical petrography, X-ray powder diffraction, and chemical analyses have revealed varying degrees of lithification, probably related to differences in initial emplacement temperature, depositional mechanism and thickness, chilling rate, and extent of mafic composition. Zeolitization was further influenced by meteoric flushing in a hydrologically open system. Chabazite in the LPT from the Selçik area occurs extensively as coatings and infillings of pores. Phillipsite in the HPT found in the Ballık, Küfeke, and Ömerkuyu areas dominates the assemblage and is accompanied by chabazite and minor amounts of analcime. Analcime was probably generated by alteration of leucite which is found as a pyrogene mineral. Alkali zeolites or Ca-bearing zeolites formed as a consequence of the addition of Ca and/or the removal of Na (i.e. dissolution of analcime). The paragenetic sequence may be described as: analcime/phillipsite → chabazite → calcite. The characterization of these assemblages may lead to better exploitation strategies for natural zeolitic resources in the region.
The weathering of chlorite in hydrothermally-altered basalt was studied with XRD, TEM and electron microprobe to determine the type and orientation of secondary minerals. Optical examination indicated chlorite assemblages to have altered in two distinct microsites: one microsite near micro-fissures traversing the regolith units, and the other away from the continuous passages. In this paper, weathering mechanisms and products of chlorite present in microsites distant from the micro-fissures are reported. In all the regolith units the original chlorite grain remained intact and was pseudomorphed by secondary products. In the saprock, chlorite altered to corrensite with possible random interstratifications of chlorite and corrensite and corrensite and vermiculite. In the saprolite, corrensite altered to vermiculite. Parallelism of two axes of the products with the host indicated topotactic alteration. In the fine saprolite, vermiculite was found to alter to kaolinite via a randomly interstratified kaolinite-vermiculite stage with a high proportion of kaolinite. Goethite crystallized in between packets of kaolinite, vermiculite and kaolinite-vermiculite. Though the disruption of the crystal structure of vermiculite is necessary in its alteration to kaolinite, the reaction was such as to maintain parallelism of the c axis. The alteration of chlorite to vermiculite was characterized by the loss of Mg and Fe and minor Al, all ions considered to be lost from the brucite-like sheet of chlorite. The Fe released during the alteration of vermiculite to kaolinite is likely to have migrated to micropores to form goethite. The presence of interstratifications of the end-members of layer silicates involved in the reaction sequence suggests that interstratifications are common during layer silicate weathering in environments where space is limited and consequently solution and ionic transport passages are restrictive.
A comparative study of the behavior of four types of smectite is reported: two with a low Fe content, SHCa-1 (hectorite from San Bernadino, California), SWy-1 (montmorillonite from Wyoming) and two nontronites NG-1 (from Hohen Hagen, Germany) and SWa-1 (Grant County, Washington). Cation exchange was performed with a freshly prepared 1 M Fe nitrate aqueous solution. Intercalation with the same solution partially neutralized with an anhydrous carbonate solution, giving a molar ratio of OH−/Fe = 2 was also studied. The modified clays were characterized by X-ray diffraction, N2 adsorption-desorption, Mossbauer spectroscopy, thermogravimetric analysis, atomic absorption spectroscopy, X-ray fluorescence and inductively coupled plasma analysis.
In the cation exchange process, the goethite impurities grew with the Fe-rich clays but not with the Fe-poor clays. This exchange was also found to have no effect on the thermal stability and structure of the clay minerals with low Fe content, whereas it had a slight effect on the structure of the Fe-rich clays and on their thermal stability. The extent of the intercalation, however, appears to depend on the expandability of the clay layers to accommodate the Fe(III) polycations, and increases from the nontronites to montmorillonite and to hectorite. This intercalation treatment has only a slight effect on both the structure and the thermal stability of hectorite and montmorillonite. In contrast, the nontronites undergo a dramatic change in both their structure and thermal stability. The formation of Fe oxyhydroxide and oxide phases in both procedures becomes very important when the initial structural Fe content of the clay minerals is high, increasing from SHCa-1, SWy-1, SWa-1 to NG-1. The contribution of the structural Fe of the clays to the formation of the Fe oxyhydroxide is not negligible, because of partial leaching of Fe from the octahedral sheet of Fe-rich clays due to the low pH of the solutions.