To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Two-dimensional horizontally periodic Rayleigh–Bénard convection between stress-free boundaries displays two distinct types of states, depending on the initial conditions. Roll states are composed of pairs of counter-rotating convection rolls. Windy states are dominated by strong horizontal wind (also called zonal flow) that is vertically sheared, precludes convection rolls and suppresses heat transport. Windy states occur only when the Rayleigh number $Ra$ is sufficiently above the onset of convection. At intermediate $Ra$ values, windy states can be induced by suitable initial conditions, but they undergo a transition to roll states after finite lifetimes. At larger $Ra$ values, where windy states have been observed for the full duration of simulations, it is unknown whether they represent chaotic attractors or only metastable states that would eventually undergo a transition to roll states. We study this question using direct numerical simulations of a fluid with a Prandtl number of 10 in a layer whose horizontal period is eight times its height. At each of seven $Ra$ values between $9\times 10^6$ and $2.25\times 10^7$ we have carried out 200 or more simulations, all from initial conditions leading to windy convection with finite lifetimes. The lifetime statistics at each $Ra$ indicate a memoryless process with survival probability decreasing exponentially in time. The mean lifetimes grow with $Ra$ approximately as $Ra^4$. This analysis provides no $Ra$ value at which windy convection becomes stable; it might remain metastable at larger $Ra$ with extremely long lifetimes.
Lower limb exoskeletons (LLEs) have demonstrated their potential in delivering quantified repetitive gait training for individuals afflicted with gait impairments. A critical concern in robotic gait training pertains to fostering active patient engagement, and a viable solution entails harnessing the patient’s intrinsic effort to govern the control of LLEs. To address these challenges, this study presents an innovative online gait learning approach with an appropriate control strategy for rehabilitation exoskeletons based on dynamic movement primitives (DMP) and an Assist-As-Needed (AAN) control strategy, denoted as DMP-AAN. Specifically tailored for post-stroke patients, this approach aims to acquire the gait trajectory from the unaffected leg and subsequently generate the reference gait trajectory for the affected leg, leveraging the acquired model and the patient’s personal exertion. Compared to conventional AAN methodologies, the proposed DMP-AAN approach exhibits adaptability to diverse scenarios encompassing varying gait patterns. Experimental validation has been performed using the lower limb rehabilitation exoskeleton HemiGo. The findings highlight the ability to generate suitable control efforts for LLEs with reduced human-robot interactive force, thereby enabling highly patient-controlled gait training sessions to be achieved.
Five celestine crystals were sampled from the (palaeo)surface intervening between the late Miocene to Pleistocene basaltic sequences of the Jabal Eghei (Nuqay) volcanic province in southern Libya and then characterised by applying a combination of the SEM–WDS, ICP/OES, PXRD and IR methods. Colour variations and related minerogenetic frameworks were also investigated. Three samples have greenish-blue-to-blue colour (480.4–482.5 nm), whereas the other two samples have blue–green colour (cyan; 489.1–494.1 nm). The colour purity ranges from 1.36–7.16. Their composition is similar, end-member celestine, in which only 1.6–4.1 at.% of Sr2+ content was substituted by Pb2+ (0.7–0.9 at.%), Ba2+ (0.5–0.7 at.%) and Ca2+ (0.2–0.8 at.%). Three samples contained vacancies, from 1.0 to 1.9 at.%. The content of other chemical elements is minor. The resulting unit-cell parameters have the ranges: a0 = 8.3578(9)–8.3705(6) Å; b0 = 5.3510(5)–5.3568(4) Å; c0 = 6.8683(7)–6.8767(2) Å and V0 = 307.17(5)–308.34(4) Å3. The PXRD and IR results are mainly in accordance with the SEM–WDS results, with a high level of correlation. However, a few discrepancies were found, producing several possible interpretations, the primary cause being a slight unit-cell axial anisotropy i.e. thermal expansion. As a consequence these results yield a new geothermometric tool that is based on the unit-cell axial anisotropy. The celestines investigated were formed during a Miocene intraplate volcanism with basaltic magmas, and associated brines lifted by the structural conduits (normal faults crosscutting the Sirt basin). The Sr-bearing fluids then poured into and over the faulted and fractured lagoon-type gypsum, anhydrite Eocene sediments. The celestine mineralisation formed within a ~368–430 K (~95–157°C) temperature range. The celestine formed at slightly elevated temperature and pressure conditions, close to the shallow subsurface environment (over 250 bars).
This study aimed to evaluate the early introduction of ultra-processed foods (UPF) and identify its association with overweight and anaemia in Brazilian children living in a situation of social vulnerability. A population-based cross-sectional study was conducted in a Brazilian capital. Children aged 12-59 months were included. The presence of overweight and anaemia was evaluated, as well as the introduction of twelve different UPF in children’s first year of life. Association analysis was performed using Poisson regression, with robust estimates of variances. A total of 561 children were studied; 85·5 % had consumed at least one UPF evaluated in the first year of life; 19·1 % were overweight and 52·0 % were anaemic. Adjusted multivariate analyses identified that the early introduction of soft drinks (Prevalence Ratio (PR) = 1·18, 95 % CI (1·02, 1·38)), packaged snacks (PR = 1·17, 95 % CI (1·05, 1·30)) and powdered soft drinks (PR = 1·36, 95 % CI (1·16, 1·60)) increased the likelihood of children being overweight, and the early introduction of chocolate drink (PR = 1·25, 95 % CI (1·02, 1·53)) increased the likelihood of them being anaemic, when comparing children who consumed these UPF before reaching 1 year of age with those who consumed these foods at 12 months of age or older. From the results found, one can see the existing relationship between the early introduction of UPF with overweight and anaemia, being necessary to intensify public health policies to combat malnutrition, focusing on the promotion of proper and healthy eating, especially during the phase of food introduction, focusing on the population living in socially vulnerable situations.
Although Naimark dilation theorem was originally stated in 1940, it still finds many important applications in various areas. The objective of this paper is to introduce a method for explicitly constructing the vectors of complementary frames in the Naimark dilation theorem, specifically in cases where the initial Parseval frame contains a Riesz basis as a subset. These findings serve as a foundation for the construction of dual frames.
We determine almost sure limits of rescaled intrinsic volumes of the construction steps of fractal percolation in ${\mathbb R}^d$ for any dimension $d\geq 1$. We observe a factorization of these limit variables which allows one, in particular, to determine their expectations and covariance structure. We also show the convergence of the rescaled expectations and variances of the intrinsic volumes of the construction steps to the expectations and variances of the limit variables, and we give rates for this convergence in some cases. These results significantly extend our previous work, which addressed only limits of expectations of intrinsic volumes.
The present study uses self-paced reading as a measure of online processing and an acceptability judgement task as a measure of offline explicit linguistic knowledge, to understand L2 learners’ comprehension processes and their awareness of subtle differences between the modal auxiliaries may and can. Participants were two groups of university students: 42 native speakers of English and 41 native speakers of Croatian majoring in L2 English. The study is part of a larger project that has provided empirical evidence of the two modals, may and can, being mutually exclusive when denoting ability (can) and epistemic possibility (may) but equally acceptable in pragmatic choices expressing permission. The present results revealed that L1 and L2 speakers rated the acceptability of sentences in offline tasks similarly; however, L2 learners showed no sensitivity to verb–context mismatches in epistemic modality while demonstrating sensitivity when processing modals expressing ability. Implications for L2 acquisition of modals and future research are discussed.
In the article, we will explore the impact of platform labour on urban spaces and the new frontiers of unionism by leveraging a ground analysis and theoretical elaborations from the PLUS project. PLUS was designed to analyse the impact of four platforms (Uber, Airbnb, Helpling, and Deliveroo) in seven European cities (Barcelona, Berlin, Bologna, Lisbon, Paris, London, and Tallinn). In doing so, PLUS supported its sociological investigations with theoretical and historical elaborations concerning the operation of contemporary platforms and the characteristics of the new form of unionism. We will present some results from PLUS, with a focus on the Bologna case, where platform workers express their dissatisfaction with their organizations, attempting to relate their strategies to certain structural aspects of business territorialization within urban spaces. We will draw upon the well-known distinction proposed by Albert Hirschman between exit, voice, and loyalty and adapt it to frame the various strategies that platform workers may adopt.
Despite the importance of assessing the quality with which low-intensity (LI) group psychoeducational interventions are delivered, no measure of treatment integrity (TI) has been developed.
Aims:
To develop a psychometrically robust TI measure for LI psychoeducational group interventions.
Method:
This study had two phases. Firstly, the group psychoeducation treatment integrity measure-expert rater (GPTIM-ER) and a detailed scoring manual were developed. This was piloted by n=5 expert raters rating the same LI group session; n=6 expert raters then assessed content validity. Secondly, 10 group psychoeducational sessions drawn from routine practice were then rated by n=8 expert raters using the GPTIM-ER; n=9 patients also rated the quality of the group sessions using a sister version (i.e. GPTIM-P) and clinical and service outcome data were drawn from the LI groups assessed.
Results:
The GPTIM-ER had excellent internal reliability, good test–retest reliability, but poor inter-rater reliability. The GPTIM-ER had excellent content validity, construct validity, formed a single factor scale and had reasonable predictive validity.
Conclusions:
The GPTIM-ER has promising, but not complete, psychometric properties. The low inter-rater reliability scores between expert raters are the main ongoing concern and so further development and testing is required in future well-constructed studies.
Dense granular systems that consist of particles of disparate sizes segregate based on size during flow, resulting in complex, coupled segregation and flow patterns. The ability to predict how granular mixtures segregate is important in the design of industrial processes and the understanding of geophysical phenomena. The two primary drivers of size segregation are pressure gradients and shear-strain-rate gradients. In this work, we isolate size segregation driven by shear-strain-rate gradients by studying two dense granular flow geometries with constant pressure fields: gravity-driven flow down a long vertical chute with rough parallel walls and annular shear flow with rough inner and outer walls. We perform discrete element method (DEM) simulations of dense flow of bidisperse granular systems in both flow geometries, while varying system parameters, such as the flow rate, flow configuration size, fraction of large/small grains and grain-size ratio, and use DEM data to inform continuum constitutive equations for the relative flux of large and small particles. When the resulting continuum model for the dynamics of size segregation is coupled with the non-local granular fluidity model – a non-local continuum model for dense granular flow rheology – we show that both flow fields and segregation dynamics may be simultaneously captured using this coupled, continuum system of equations.
Numerical simulations of multiphase flows are crucial in numerous engineering applications, but are often limited by the computationally demanding solution of the Navier–Stokes (NS) equations. The development of surrogate models relies on involved algebra and several assumptions. Here, we present a data-driven workflow where a handful of detailed NS simulation data are leveraged into a reduced-order model for a prototypical vertically falling liquid film. We develop a physics-agnostic model for the film thickness, achieving a far better agreement with the NS solutions than the asymptotic Kuramoto–Sivashinsky (KS) equation. We also develop two variants of physics-infused models providing a form of calibration of a low-fidelity model (i.e. the KS) against a few high-fidelity NS data. Finally, predictive models for missing data are developed, for either the amplitude, or the full-field velocity and even the flow parameter from partial information. This is achieved with the so-called ‘gappy diffusion maps’, which we compare favourably to its linear counterpart, gappy POD.
An infinite graph is said to be highly connected if the induced subgraph on the complement of any set of vertices of smaller size is connected. We continue the study of weaker versions of Ramsey’s theorem on uncountable cardinals asserting that if we color edges of the complete graph, we can find a large highly connected monochromatic subgraph. In particular, several questions of Bergfalk, Hrušák, and Shelah (2021, Acta Mathematica Hungarica 163, 309–322) are answered by showing that assuming the consistency of suitable large cardinals, the following are relatively consistent with ZFC:
•$\kappa \to _{hc} (\kappa )^2_\omega $ for every regular cardinal $\kappa \geq \aleph _2$,
This paper examines Smalley’s preliminary taxonomy of the sound shape and the subsequent application of graphical notation in electroacoustic music. It will demonstrate ways in which spatial categorisations of the morphological sound shape have remained relatively untouched in academia, despite a codependency of frequency, space and time. Theoretical examples and existing visualisations of the sound shape will be considered as a starting point, to determine why the holistic visualisation of space is warranted. A notational system addressing the codependency between spatial and spectral sound shapes will be presented, with reference to its context in Cartesian-coordinate sound environments. This method of electroacoustic notation will incorporate the visualisation of Smalley’s categorisation of spatial sound shapes and ideas of spatial gesture, texture and distribution within Smalley’s composed and listening spaces. This visualisation and notation of composed and listening spaces will demonstrate that audio technologies are imperative drivers in the future analysis and understanding of the sound shape. It will measure the modulation of spatial sound shape properties for Cartesian (height, width, depth) and spherical (azimuth and altitude) across linear temporality, to better represent the complete form of Smalley’s sound shape. This spatial notation will aid the rounded visualisation of Smalley’s morphology, motion, texture, gesture, structure and form. Use of this notational framework will illustrate ways in which a new tool to score electroacoustic sound shapes can inform new practices in computer music composition.