To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
X-ray basal reflections of several HDTMA-vermiculites show that when these contain co-adsorbed molecules of HDTMA-Br, their interlayer spacings are ∼29.5 Å. After HDTMA-Br has been leached out with ethanol, spacings decrease to ∼26 Å, but when exposed to toluene vapor the spacings increase to ∼36 Å, and to ∼45 Å in toluene liquid. Transmission X-ray diffraction photographs of HDTMA-vermiculites, both with and without co-adsorbed HDTMA-Br, indicate that they have highly ordered interlayer structures. The structure of HDTMA-Br-free vermiculite flakes is more open with the interlayer cations arranged in a 3a × b superstructure. In the HDTMA-Br containing HDTMA vermiculite flakes, HDTMA-Br molecules occupy interstitial positions between the HDTMA cations. Swelling in toluene vapor does not disorder the 2-dimensional arrangement of interlayer cations, but disorder does occur in toluene liquid. In toluene vapor, the aliphatic chains of the cations remain partially interdigitated, but in toluene liquid the interdigitation disappears. In response to the layer-charge density, the organization of the interlayer HDTMA units is caused by the self-assembly process responsible for hydrocarbon close packing.
Dyes are toxic and considered to be extremely hazardous to natural environments. Hence, adsorbents to remove dyes from contaminated water are needed. To develop adsorbents with a high adsorption capacity for different dyes, easy separation, and low cost, a novel dye adsorbent was prepared by activating fly ash with NaOH. The adsorbent morphology, structure, and specific surface area were characterized using scanning electron microscopy, X-ray powder diffraction, and surface area measurements using N2 adsorption-desorption. The adsorption abilities of the synthesized adsorbents were examined based on methylene blue and acid fuchsin adsorption from water. The capabilities of the adsorbents as a function of adsorbent use, dye type, dye concentration, time, and pH were investigated and compared. The results for methylene blue and acid fuchsin adsorption were modeled using pseudo-second order kinetics and the Langmuir adsorption isotherm, respectively. These modified adsorbents synthesized from fly ash may provide a promising solution to purify dye-contaminated waste water with the advantages of high efficiency and low cost.
Clay minerals impart important chemical properties to soils, in part, by virtue of changes in the redox state of Fe in their crystal structures. Therefore, measurement of Fe(III)/Fe(II) and partitioning of Fe(II) in different reactive sites in clay minerals (during biological and chemical Fe(III) reduction) is essential to understand their role and their relative reactivity in terms of reduction and immobilization of heavy metal contaminants such as technetium. This study had three objectives: (1) to understand the degree of dissolution of nontronite (Fe-rich smectite) as a result of chemical and biological reduction of Fe(III) in the structure; (2) to quantify partitioning of chemically and biologically produced Fe(II) into different reactive sites in reduced nontronite, including aqueous Fe2+, ammonium chloride-extractable Fe(II) (mainly from the ion-exchangeable sites, denoted as ${\rm{Fe}}{\left( {{\rm{II}}} \right)_{{\rm{N}}{{\rm{H}}_4}{\rm{Cl}}}}$), sodium acetate-extractable Fe(II) (mainly from the surface complexation sites, denoted as Fe(II)acetate), and structural Fe(II) (denoted as Fe(II)str); and (3) to evaluate the reactivity of these Fe(II) species in terms of Tc(VII) reduction. Chemical and biological reduction of Fe(III) in nontronite (NAu-2) was performed, and reduced nontronite samples with different extents of Fe(III) reduction (1.2–71%) were prepared. The extent of reductive dissolution was measured as a function of the extent of Fe(III) reduction. Our results demonstrated that chemically and biologically produced Fe(II) in NAu-2 may be accommodated in the NAu-2 structure if the extent of Fe(III) reduction is small (< ∼30%). When the extent of reduction was >∼30%, dissolution of nontronite occurred with a corresponding decrease in crystallinity of residual nontronite. The Fe(II) produced was available for partitioning into four species: ${\rm{Fe}}_{\left( {{\rm{ab}}} \right)}^{2 + }$, Fe(II)acetate, ${\rm{Fe}}{\left( {{\rm{II}}} \right)_{{\rm{N}}{{\rm{H}}_4}{\rm{Cl}}}}$, and Fe(II)str. The increase in Fe(II)acetate during the early stages of Fe(III) reduction indicated that the Fe(II) released had the greatest affinity for the surface-complexation sites, but this site had a limited capacity (∼60 µmol of Fe(II)/g of NAu-2). The subsequent increase in ${\rm{Fe}}{\left( {{\rm{II}}} \right)_{{\rm{N}}{{\rm{H}}_4}{\rm{Cl}}}}$ indicated that the released Fe(II) partitioned into the exchangeable sites once the amount of Fe at the surface-complexation sites reached half of its maximum site capacity. The fraction of Fe(II)str decreased concomitantly, as a result of Fe(II) release from the NAu-2 structure, from 100% when the extent of Fe(III) reduction was <30% to nearly 65% when the extent of Fe(III) reduction reached 71%. The Fe(II)acetate and Fe(II)str exhibited greater reactivity in terms of Tc(VII) reduction than the ${\rm{Fe}}{\left( {{\rm{II}}} \right)_{{\rm{N}}{{\rm{H}}_4}{\rm{Cl}}}}$. Clearly, the surface-complexed and structural Fe(II) are the desirable species when reduced clay minerals are used to reduce and immobilize soluble heavy metals in contaminated groundwater and soils. These results have important implications for understanding microbe—clay mineral interactions and heavy metal immobilization in clay-rich natural environments.
The Assembly met on 20–25 May with the Right Rev'd Sally Foster-Fulton BA BD as Moderator. She is Head of Christian Aid in Scotland and has served as a Parish Minister in the Church of Scotland and in the Presbyterian Church (USA). The Rt Hon Lord Hodge DPSC was re-appointed by His Majesty as Lord High Commissioner to the General Assembly for a second year. The Church has roughly 284,000 members (2021 figures) and around 1,200 charges.
A major problem with polymeric membranes is low hydrophilicity and consequently a tendency to fouling. Preparing composite membranes is one way to improve the properties and performance of the neat membrane. In the present study, the effects of coagulation-bath temperature (CBT) and the hydrophilic nanoclay concentration of montmorillonite (MMT) on the morphology and performance of asymmetric cellulose acetate butyrate (CAB) membranes were investigated. The membranes were prepared via phase inversion induced by immersion precipitation in a water-coagulation bath. The morphology of the membranes prepared was studied by scanning electron microscopy (SEM). The permeation performance of the membranes prepared was studied by experiments using pure water and bovine serum albumin (BSA) solutions as feeds. The results showed that the membrane thickness and pure water flux (PWF) were increased by adding up to 2 wt.% MMT nanoclay to the casting solution. These two parameters decreased with further addition of MMT, however. In addition, the results obtained in the case of filtration of BSA solution indicated that the addition of MMT in the casting solution increased permeate flux and reduced BSA rejection slightly. Furthermore, increasing the MMT nanoclay concentration in the casting solution increased pure water flux recovery and consequently decreased the fouling. Decreasing the CBT in the presence of MMT during membrane preparation resulted in the formation of a more porous structure and consequently increased the flux and simultaneously decreased the BSA rejection.
Dacitic lava recovered from the immediate subsurface of the submarine PACMANUS hydrothermal vent field exhibits variable degrees of hydrothermal alteration resulting from the interaction of the glassy volcanic rocks with mineralizing hydrothermal fluids at relatively low temperatures. Transmission electron microscopic (TEM) investigations revealed that the felsic volcanic glass transformed to nm-thick smectitic flakes of the montmorillonite-beidellite series via a dissolution and reprecipitation mechanism. The process of smectite formation did not proceed through X-ray amorphous or poorly crystalline transitional phases. Alteration of the glass was found to be most pronounced adjacent to perlitic cracks and vesicles that form an interconnected network focusing fluid flow. Glass dissolution adjacent to these fluid pathways resulted in a characteristic alteration texture at the nm scale; the intensely altered groundmass contains round cavities that are partially coated or filled by smectitic flakes. The Mg content of the smectite broadly increases towards the fluid pathways. Smectitic flakes with compositions corresponding to saponite occur in the intensely altered groundmass adjacent to perlitic cracks. In addition, anatase, apatite and rare kaolinite were formed during the alteration of the volcanic glass. Primary minerals including plagioclase show only minor textural evidence of alteration. However, some primary plagioclase laths show X-ray amorphous rims depleted in Na, Ca and Al. The TEM investigations of the dacitic lava samples from the PACMANUS vent field demonstrate that volcanic glass has a higher susceptibility to hydrothermal alteration at low temperatures than most associated primary phases. The findings of the study suggest that the interaction between the volcanic rock and the hydrothermal fluids proceeded under open-system conditions leading to a mobilization of alkali elements and a redistribution of Ti at the nm scale. The Mg required for the formation of trioctahedral smectite was supplied by the hydrothermal fluids.
Studies of the paragenesis of authigenic illite in arkosic sandstones of various regions and ages have revealed that the illitization of kaolinite is an important reaction accounting for the formation of authigenic illite in sandstones during burial diagenesis. The illitization of kaolinite takes place at an intermediate burial depth of 3–4 km, where pressure can reach values of 100 MPa (≈ 1000 bars). The purpose of the present study was to analyze the effect of pressure on the rate of kaolinite illitization in alkaline conditions. Hydrothermal reactions were conducted on KGa-1b kaolinite in KOH solution at 300°C and under pressures of 500, 1000, and 3000 bars for 1 to 24 h. The visual examination of the X-ray diffraction (XRD) patterns indicated a notable influence of pressure on the reaction rate. Molar percentages of muscovite/illite formed at each time interval were calculated from the analysis of two diagnostic XRD peaks, representing the 060 reflections of kaolinite and muscovite/illite. The data were modeled to obtain the initial rate of conversion at each pressure. The results indicated that the initial rate of kaolinite to muscovite/illite conversion is one order of magnitude greater at 3000 bars than at 500 or 1000 bars. Comparison of these data with those in the literature show a faster conversion rate (several orders of magnitude) in an initially high-alkaline solution than in a near-neutral solution.
For more than forty years, The Clay Minerals Society has dispensed a set of source clays which have enabled a large number of researchers to work on similar materials. Many of these source clays remained unchanged over the years but, conversely, other clays have gone out of stock and thus were replaced. This was the fate of montmorillonite STx-1a, which was replaced by STx-1b. Although STx-1a and STx-1b share many basic chemical and mineralogical features, some minor differences exist that can affect behavior. A baseline characterization of the source clay STx-1b, which was the objective of this study, was, therefore, necessary to provide researchers a tool useful not only for new investigation but also to compare new results obtained on STx-1b with literature data on STx-1a. This characterization was gained using traditional and advanced methods that included: 1) chemical composition (major and trace elements); 2) cation exchange capacity determination; 3) thermal analyses coupled with evolved gas mass spectrometry; 4) quantitative mineralogical characterization using powder X-ray diffraction and Rietveld- RIR (Reference Intensity Ratio) refinement; 5) X-ray absorption spectroscopy at the Fe K-edge; 6) diffuse reflectance ultraviolet-visible and infrared spectroscopies; and 7) 29Si, 27Al, and 1H magic-angle spinning nuclear magnetic resonance measurements. According to this multi-analytical approach, the chemical formula for STx-1b is [4](Si7.753Al0.247) [6](Al3.281Mg0.558Fe0.136Ti0.024Mn0.002) [12](Ca0.341Na0.039 K0.061)O20(OH)4.
The competitive adsorption to kaolinite between Cd(II) and four polyaromatic dyes (9-aminoacridine, 3,6-diaminoacridine, azure A and safranin O) was studied in 5 mM KNO3 at 25°C. Under these conditions, Cd adsorbs to the silica face of kaolinite between about pH 4 and 6.5, but at higher pH, adsorbed Cd is progressively relocated to the crystal edges. In the presence of dye, less Cd adsorbed to kaolinite below pH 7. If sufficient dye was added to saturate the kaolinite surface, Cd adsorption was totally suppressed up to ∼pH 6. At higher pH, Cd followed the characteristic pattern for edge adsorption. In separate experiments 9-aminoacridine and azure A displaced pre-adsorbed Cd from kaolinite. The displacement curves were initially linear, with one Cd ion being displaced for every 13 dye molecules adsorbed at pH 5.5, and one Cd ion for every 35 dye molecules at pH 7.5. The interpretation of these results is that the dyes bind to kaolinite much more strongly than Cd(II) does, but only to the silica face.
The crystal chemistry of Ti-rich trioctahedral micas of plutonic origin, cropping out at Black Hill (South Australia) has been investigated by combining electron microprobe analysis, single crystal X-ray diffraction, Mössbauer spectroscopy and X-ray photoelectron spectroscopy. Chemical analyses have shown the samples taken to be quite homogeneous and Ti-rich (TiO2 ≈ 7 wt.%). Mössbauer investigation yielded Fe2+/Fe3+ ≈ 30. X-ray photoelectron spectroscopy analysis seems to suggest the occurrence of three Ti species: octahedral Tr4+(60%), octahedral Ti3+(26%), and tetrahedral Ti4+(14%). The analyzed sample belongs to the 1M polytype and the relevant crystal data from structure analysis are: a = 5.347(1) Å, b = 9.261(2) Å, c = 10.195(2) Å, β = 100.29°(1). Anisotropic structure refinement was performed in space group C2/m, and converged at R = 2.62, Rw = 2.80. Structural details (the c cell parameter, the off-center shift of the M2 cation towards 04, the bond-length distortions of the cis-M2 octahedron, the interlayer sheet thickness, the projection of K−O4 distance along c*, the difference <K−O>outer-<K−O>inner) support the occurrence of the Ti-oxy substitution (VIR2+ + 2(OH)− ⇌ Ti4+ + 202− + H2) in the sample. Analysis of structural distortions as a function of the Ti content revealed that the positions of the oxygens 03 and 04 are displaced in opposite senses along [100]. This produces an enlargement of the M1 site with respect to the M2 site and a shortening of the interlayer distance. This trend seems to be in common with other Ti-rich 1M micas of plutonic origin.
Chemical denudation and chemical weathering rates vary under climatic, bedrock, biotic, and topographic conditions. Constraints for landscape evolution models must consider changes in these factors on human and geologic time scales. Changes in nutrient dynamics, related to the storage and exchange of K+ in clay minerals as a response to land use change, can affect the rates of chemical weathering and denudation. Incorporation of these changes in landscape evolution models can add insight into how land use changes affect soil thickness and erodibility. In order to assess changes in soil clay mineralogy that result from land-use differences, the present study contrasts the clay mineral assemblages in three proximal sites that were managed differently over nearly the past two centuries where contemporary vegetation was dominated by old hardwood forest, old-field pine, and cultivated biomes. X-ray diffraction (XRD) of the oriented clay fraction using K-, Mg-, and Na-saturation treatments for the air-dried, ethylene glycol (Mg-EG and K-EG) solvated, and heated (100, 350, and 550°C) states were used to characterize the clay mineral assemblages. XRD patterns of degraded biotite (oxidized Fe and expelled charge-compensating interlayer K) exhibited coherent scattering characteristics similar to illite. XRD patterns of the Mg-EG samples were, therefore, accurately modeled using NEWMOD2® software by the use of mineral structure files for discrete illite, vermiculite, kaolinite, mixed-layer kaolinite-smectite, illite-vermiculite, kaolinite-illite, and hydroxy-interlayered vermiculite. The soil and upper saprolite profiles that formed on a Neoproterozoic gneiss in the Calhoun Experimental Forest in South Carolina, USA, revealed a depth-dependence for the deeply weathered kaolinitic to the shallowly weathered illitic/vermiculitic mineral assemblages that varied in the cultivated, pine, and hardwood sites, respectively. An analysis of archived samples that were collected over a five-decade growth period from the pine site suggests that the content of illite-like layers increased at the surface within 8 y. Historical management of the sites has resulted in different states of dynamic equilibrium, whereby deep rooting at the hardwood and pine sites promotes nutrient uplift of K from the weathering of orthoclase and micas. Differences in the denudation rates at the cultivated, pine, and hardwood sites through time were reflected by changes in the soil clay mineralogy. Specifically, an increased abundance of illite-like layers in the surface soils can serve as a reservoir of K+.
This paper examines the historical development and contemporary landscape of Islamic financial law in Central Asia. Rooted in Sharia principles such as avoiding riba (usury), gharar (uncertainty), and maysir (gambling), Islamic finance has evolved into a sophisticated framework that promotes equity, transparency, and social welfare. In Central Asia, a predominantly Muslim region shaped by diverse cultural influences, Islamic financial jurisprudence reflects a unique blend of traditional practices and modern regulations. The growth of Islamic finance in this region is driven by increasing awareness, regulatory support, and integration with global markets. Key principles like the prohibition of interest, risk-sharing, and asset-backed financing underpin the operations of Islamic financial institutions.
Case studies from Kazakhstan, Uzbekistan, and Tajikistan illustrate successful implementation strategies. The paper concludes by emphasizing the potential for Islamic finance to drive sustainable economic development in Central Asia and the need for ongoing research, collaboration, and policy support to navigate the complex dynamics of this evolving field.
Hydrothermal syntheses of the magadiite, a layered silicate structure, were conducted in the presence of a heteroatom source (SnCl4.5H2O) with the intention of investigating its influence on the resulting material, as well as the possibility of isomorphous replacement of Si by Sn atoms in the abovementioned structure. For comparison, unmodified magadiite, Al-containing magadiite, and impregnated magadiite were synthesized. The magadiite structure was identified for samples with Sn/Si ratios up to 0.015. Synthetic methods applied to Sn-modified materials were found to be unsuitable for the introduction of Al. The characterization methods used were X-ray diffraction, temperature-programmed reduction, and 29Si magic angle spinning nuclear magnetic resonance and these revealed the substitution of Si by Sn in the silica layers. No additional acid centers on the surfaces of the modified samples were detected, suggesting the presence of the desired four-coordinate Sn in the silica layers.
The effect of FeCl3 in acetonic medium on the structure of Na-bentonite was studied using X-ray diffraction (XRD), 57Fe Mössbauer spectroscopy, X-ray fluorescence spectroscopy and infrared spectroscopy to describe the structure of the bentonite before and after treatment. In the samples treated with FeCl3, an increase in the basal spacing was found by XRD, while a new magnetically split component assigned to Fe3+ incorporated within the interlayer regions of montmorillonite showed up in the low-temperature Mössbauer spectra. The Mössbauer parameters observed were close to those of Fe oxyhydroxides, suggesting the presence of some kind of nanoparticles. These results show that the treatment with acetonic FeCl3 solution is an effective method for introducing Fe into montmorillonite in the form of Fe3+ accommodated in the interlayer region. The treated samples proved to be efficient Lewis catalysts in the acylation of aldehydes (benzaldehyde and 4-OH-benzaldehyde) by acetic acid anhydride.
An overlap of bands produced by the O−H stretching vibrations of H2O (O–Hw) and structural OH (O−Hs) in smectite hampers the study by infrared spectroscopy (IR) of both their layer and interlayer structure. The present study re-evaluated the D2O saturation of smectite as a tool to enable separation of the overlapping bands at ambient conditions. Real-time monitoring by Attenuated Total Reflectance infrared spectroscopy (ATR-IR) was employed during in situ sample drying and H2O or D2O saturation at ambient temperature. Six dioctahedral and one trioctahedral pure smectites in Ca2+-, Na+-, and Cs+-cationic forms were studied to explore variability in total layer charge, charge location, and interlayer cation. The IR data showed the interlayer O−Dw signature at 2700–2200 cm−1 as a proxy for the O−Hw signature in the 3700–3000 cm−1 region. In addition to the expected liquid-like bands of D2O in the interlayer, these O−Dw spectra exhibited an additional sharp stretching feature in the 2695–2680 cm−1 range. No significant cation dependence of the sharp band position was observed between pairs of Ca- and Na-smectites for relative humidity (RH) between 60 and 80%, despite the large difference in the ionic potential between these interlayer cations. The intensity of the sharp band was found to be almost insensitive to changes in water content within the range 60–80% RH. The sharp band frequency decreased linearly with increasing total charge of the 2:1 layer (and can be used as a proxy for it), but no effect of charge location could be discerned. In agreement with early studies, this band was attributed to D2O located on the surface of the interlayer, pointing one O−D group toward the siloxane surface. Based on its high frequency, this band was indicative of free O−D oscillators, with very little or no involvement in hydrogen bonding (“dangling OD”). By analogy to the spectra of D2O-smectites, the spectrum of H2O-smectites also involves a sharp O−Hw analog at ~3630 cm−1 overlapping with typical OHs bands (e.g. Al2OH). As a result of this overlap, the sharp 3630 cm−1 O−Hw contribution was often missed or attributed solely to O−Hs.