To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Take anything in the universe, put it in a box, and heat it up. Regardless of what you start with, the motion of the substance will be described by the equations of fluid mechanics. This remarkable universality is the reason why fluid mechanics is important. The key equation of fluid mechanics is the Navier-Stokes equation. This textbook starts with the basics of fluid flows, building to the Navier-Stokes equation while explaining the physics behind the various terms and exploring the astonishingly rich landscape of solutions. The book then progresses to more advanced topics, including waves, fluid instabilities, and turbulence, before concluding by turning inwards and describing the atomic constituents of fluids. It introduces ideas of kinetic theory, including the Boltzmann equation, to explain why the collective motion of 1023 atoms is, under the right circumstances, always governed by the laws of fluid mechanics.
In this chapter, we (a) introduce the notion of a convex problem in cone-constrained form, (b) present the Lagrange function of a cone-constrained convex problem, (c) prove the convex programming Duality Theorem in cone-constrained form, and (d) discuss conic programming and conic duality, and present the conic programming Duality Theorem.
We introduce the reader to the physics underlying four key qubit technologies: photons, spins, ions, and superconducting circuits, and their pros and cons are discussed.
The key issue of two-qubit gates is discussed in this chapter: there are two basic approaches: direct interaction (which is easy but short-ranged) and using a quantum data bus, which is the key ingredient of the Cirac-Zoller gate.
In this chapter we present convex programming optimality conditions in both sadde point form and Karush--Kuhn--Tucker form for mathematical programming, and also optimality conditions for cone-constrained convex programs and for conic problems. We conclude the chapter by revisiting linear programming duality as a special case of conic duality and reproducing the classical results on the dual of a linearly constrained convex quadratic minimization problem.
Using linear algebra, the mathematical techniques needed for describing and manipulating qubits are laid out in detail, including quantum circuits. Moreover, the chapter also explains the state evolution of an isolated quantum system, as is predicted by the Schrödinger equation, as well as non-unitary irreversible operations such as measurement. More details of classical and quantum randomness and their mathematical representation is discussed, leading to the density matrix. representation of a quantum state.
In this chapter, we (a) outline operations preserving convexity of functions, (b) present differential criteria for convexity, (c) establish convexity of several important multivariate functioins, (d) present the gradient inequality, and (e) establish local boundedness and Lipschitz continuity of convex functions.
This is the chapter that gets down to applying concepts from the previous chapters about qubits to construct a quantum computer. It teaches how numbers can be stored in quantum computers and how their functions can be evaluated. It also demonstrates the computational speed-up that quantum computers offer over their classical counterparts through the study of Deutsch, Deutsch-Jozsa, and Bernstein-Vazirani algorithms. Finally, it gives a practical demonstration of speed-up in search algorithms provided by Grover’s search algorithm.