We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We characterize, using commuting zero-flux homologies, those volume-preserving vector fields on a 3-manifold that are steady solutions of the Euler equations for some Riemannian metric. This result extends Sullivan’s homological characterization of geodesible flows in the volume-preserving case. As an application, we show that steady Euler flows cannot be constructed using plugs (as in Wilson’s or Kuperberg’s constructions). Analogous results in higher dimensions are also proved.
We consider the dynamical properties of $C^{\infty }$-variations of the flow on an aperiodic Kuperberg plug $\mathbb{K}$. Our main result is that there exists a smooth one-parameter family of plugs $\mathbb{K}_{\unicode[STIX]{x1D716}}$ for $\unicode[STIX]{x1D716}\in (-a,a)$ and $a<1$, such that: (1) the plug $\mathbb{K}_{0}=\mathbb{K}$ is a generic Kuperberg plug; (2) for $\unicode[STIX]{x1D716}<0$, the flow in the plug $\mathbb{K}_{\unicode[STIX]{x1D716}}$ has two periodic orbits that bound an invariant cylinder, all other orbits of the flow are wandering, and the flow has topological entropy zero; (3) for $\unicode[STIX]{x1D716}>0$, the flow in the plug $\mathbb{K}_{\unicode[STIX]{x1D716}}$ has positive topological entropy, and an abundance of periodic orbits.
In this paper we deal with the existence of periodic orbits of geodesible vector fields on closed 3-manifolds. A vector field is geodesible if there exists a Riemannian metric on the ambient manifold making its orbits geodesics. In particular, Reeb vector fields and vector fields that admit a global section are geodesible. We will classify the closed 3-manifolds that admit aperiodic volume-preserving Cω geodesible vector fields, and prove the existence of periodic orbits for Cω geodesible vector fields (not volume preserving), when the 3-manifold is not a torus bundle over the circle. We will also prove the existence of periodic orbits of C2 geodesible vector fields on some closed 3-manifolds.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.