We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper introduces a class of abstract linear representations on Banach convolution function algebras over homogeneous spaces of compact groups. Let $G$ be a compact group and $H$ a closed subgroup of $G$. Let $\mu $ be the normalized $G$-invariant measure over the compact homogeneous space $G/H$ associated with Weil's formula and $1\,\le \,p\,<\,\infty $. We then present a structured class of abstract linear representations of the Banach convolution function algebras ${{L}^{p}}\left( G/H,\,\mu \right)$.
This paper introduces a unified operator theory approach to the abstract Plancherel (trace) formulas over homogeneous spaces of compact groups. Let $G$ be a compact group and let $H$ be a closed subgroup of $G$. Let ${G}/{H}\;$ be the left coset space of $H$ in $G$ and let $\mu$ be the normalized $G$-invariant measure on ${G}/{H}\;$ associated with Weil’s formula. Then we present a generalized abstract notion of Plancherel (trace) formula for the Hilbert space ${{L}^{2}}\left( {G}/{H,\,\mu }\; \right)$.
This paper presents a structured study for abstract harmonic analysis of relative convolutions over canonical homogeneous spaces of semidirect product groups. Let $H,K$ be locally compact groups and $\unicode[STIX]{x1D703}:H\rightarrow \text{Aut}(K)$ be a continuous homomorphism. Let $G_{\unicode[STIX]{x1D703}}=H\ltimes _{\unicode[STIX]{x1D703}}K$ be the semidirect product of $H$ and $K$ with respect to $\unicode[STIX]{x1D703}$ and $G_{\unicode[STIX]{x1D703}}/H$ be the canonical homogeneous space (left coset space) of $G_{\unicode[STIX]{x1D703}}/H$. We present a unified approach to the harmonic analysis of relative convolutions over the canonical homogeneous space $G_{\unicode[STIX]{x1D703}}/H$.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.