We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Particle-laden horizontal turbulent pipe flow is studied experimentally in the two-way coupling regime with a focus on delineating the effects of particle-to-fluid density ratio $\rho _{p}/\rho _{f}=1$ and 1.05 on the fluid and particle statistics. Particle volume fraction $\phi _{v}$ up to $1\,\%$ and viscous Stokes numbers ranging from $St^+ \approx 1.2$ to $St^+ \approx 3.8$ are investigated at friction Reynolds number $Re_\tau \approx 195$ using time-resolved two-dimensional particle image and tracking velocimetry. Substantial differences are observed between the statistics of neutrally buoyant (i.e. $\rho _{p}/\rho _{f}=1$) and denser (i.e. $\rho _{p}/\rho _{f}=1.05$) settling particles (with settling velocities 0.12–0.32 times the friction velocity), which, at most instances, show opposing trends compared to unladen pipe flow statistics. Neutrally buoyant particles show a slightly increased overall drag and suppressed turbulent stresses, but elevated particle–fluid interaction drag and results in elongated turbulent structures compared to the unladen flow, whereas $\rho _{p}/\rho _{f}=1.05$ particles exhibit a slight overall drag reduction even with increased radial turbulent stresses, and shorter streamwise structures compared to the unladen flow. These differences are enhanced with increasing $St^+$ and $\phi _v$, and can be attributed to the small but non-negligible settling velocity of denser particles, which also leads to differing statistics in the upper and lower pipe halves.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.