We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider pricing of a specialised critical illness and life insurance contract for breast cancer (BC) risk. We compare (a) an industry-based Markov model with (b) a recently developed semi-Markov model, which accounts for unobserved BC cases and progression through clinical stages of BC, and (c) an alternative Markov model derived from (b). All models are calibrated using population data in England and data from the medical literature. We show that the semi-Markov model aligns best with empirical evidence. We then consider net premiums of specialized life insurance products under various scenarios of cancer diagnosis and treatment. The results show strong dependence on the time spent with diagnosed or undiagnosed pre-metastatic BC. This proves to be significant for refining cancer survival estimates and accurately estimating related age dependence by cancer stage. In contrast, the industry-based model, by overlooking this critical factor, is more sensitive to the model assumptions, underscoring its limitations in cancer estimates.
This special issue of the Journal of Demographic Economics contains 10 contributions to the academic literature all dealing with longevity risk and capital markets. Draft versions of the papers were presented at Longevity 16: The Sixteenth International Longevity Risk and Capital Markets Solutions Conference that was held in Helsingør near Copenhagen on 13–14 August 2021. It was hosted by PerCent at Copenhagen Business School and the Pensions Institute at City, University of London.
The purpose of this paper is to identify a workhorse mortality model for the adult age range (i.e., excluding the accident hump and younger ages). It applies the “general procedure” (GP) of Hunt & Blake [(2014), North American Actuarial Journal, 18, 116–138] to identify an age-period model that fits the data well before adding in a cohort effect that captures the residual year-of-birth effects arising in the original age-period model. The resulting model is intended to be suitable for a variety of populations, but economises on the number of period effects in comparison with a full implementation of the GP. We estimate the model using two different iterative maximum likelihood (ML) approaches – one Partial ML and the other Full ML – that avoid the need to specify identifiability constraints.
Different mortality rates for different socio-economic groups within a population have been consistently reported throughout the years. In this study, we aim to exploit data from multiple public sources, including highly detailed cause-of-death data from the United States Centers for Disease Control and Prevention, to explore the mortality gap between the better and worse off in the US during the period 1989–2015, using education as a proxy.
Significant new opportunities for astrophysics and cosmology have been identified at low radio frequencies. The Murchison Widefield Array is the first telescope in the southern hemisphere designed specifically to explore the low-frequency astronomical sky between 80 and 300 MHz with arcminute angular resolution and high survey efficiency. The telescope will enable new advances along four key science themes, including searching for redshifted 21-cm emission from the EoR in the early Universe; Galactic and extragalactic all-sky southern hemisphere surveys; time-domain astrophysics; and solar, heliospheric, and ionospheric science and space weather. The Murchison Widefield Array is located in Western Australia at the site of the planned Square Kilometre Array (SKA) low-band telescope and is the only low-frequency SKA precursor facility. In this paper, we review the performance properties of the Murchison Widefield Array and describe its primary scientific objectives.
The present paper considers the present value, Z(t), of a series of cashflows up to some time t. More specifically, the cashflows and the interest rate process will often be stochastic and not necessarily independent of one another or through time. We discuss under what circumstances Z(t) will converge almost surely to some finite value as t→∞. This problem has previously been considered by Dufresne (1990) who provided a sufficient condition for almost sure convergence of Z(t) (the Root Test) and then proceeded to consider some specific examples of such processes. Here, we develop Dufresne's work and show that the sufficient condition for convergence can be proved to hold for quite a general class of model which includes the growing number of Office Models with stochastic cashflows.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.