We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Various water-based heater-cooler devices (HCDs) have been implicated in nontuberculous mycobacteria outbreaks. Ongoing rigorous surveillance for healthcare-associated M. abscessus (HA-Mab) put in place following a prior institutional outbreak of M. abscessus alerted investigators to a cluster of 3 extrapulmonary M. abscessus infections among patients who had undergone cardiothoracic surgery.
Methods:
Investigators convened a multidisciplinary team and launched a comprehensive investigation to identify potential sources of M. abscessus in the healthcare setting. Adherence to tap water avoidance protocols during patient care and HCD cleaning, disinfection, and maintenance practices were reviewed. Relevant environmental samples were obtained. Patient and environmental M. abscessus isolates were compared using multilocus-sequence typing and pulsed-field gel electrophoresis. Smoke testing was performed to evaluate the potential for aerosol generation and dispersion during HCD use. The entire HCD fleet was replaced to mitigate continued transmission.
Results:
Clinical presentations of case patients and epidemiologic data supported intraoperative acquisition. M. abscessus was isolated from HCDs used on patients and molecular comparison with patient isolates demonstrated clonality. Smoke testing simulated aerosolization of M. abscessus from HCDs during device operation. Because the HCD fleet was replaced, no additional extrapulmonary HA-Mab infections due to the unique clone identified in this cluster have been detected.
Conclusions:
Despite adhering to HCD cleaning and disinfection strategies beyond manufacturer instructions for use, HCDs became colonized with and ultimately transmitted M. abscessus to 3 patients. Design modifications to better contain aerosols or filter exhaust during device operation are needed to prevent NTM transmission events from water-based HCDs.
To describe the epidemiology of complex colon surgical procedures (COLO), stratified by present at time of surgery (PATOS) surgical-site infections (SSIs) and non-PATOS SSIs and their impact on the epidemiology of colon-surgery SSIs.
Design:
Retrospective cohort study.
Methods:
SSI data were prospectively collected from patients undergoing colon surgical procedures (COLOs) as defined by the National Healthcare Safety Network (NHSN) at 34 community hospitals in the southeastern United States from January 2015 to June 2019. Logistic regression models identified specific characteristics of complex COLO SSIs, complex non-PATOS COLO SSIs, and complex PATOS COLO SSIs.
Results:
Over the 4.5-year study period, we identified 720 complex COLO SSIs following 28,188 COLO surgeries (prevalence rate, 2.55 per 100 procedures). Overall, 544 complex COLO SSIs (76%) were complex non-PATOS COLO SSIs (prevalence rate [PR], 1.93 per 100 procedures) and 176 (24%) complex PATOS COLO SSIs (PR, 0.62 per 100 procedures). Age >75 years and operation duration in the >75th percentile were independently associated with non-PATOS SSIs but not PATOS SSIs. Conversely, emergency surgery and hospital volume for COLO procedures were independently associated with PATOS SSIs but not non-PATOS SSIs. The proportion of polymicrobial SSIs was significantly higher for non-PATOS SSIs compared with PATOS SSIs.
Conclusions:
Complex PATOS COLO SSIs have distinct features from complex non-PATOS COLO SSIs. Removal of PATOS COLO SSIs from public reporting allows more accurate comparisons among hospitals that perform different case mixes of colon surgeries.
Sparse recent data are available on the epidemiology of surgical site infections (SSIs) in community hospitals. Our objective was to provide updated epidemiology data on complex SSIs in community hospitals and to characterize trends of SSI prevalence rates over time.
Design:
Retrospective cohort study.
Methods:
SSI data were collected from patients undergoing 26 commonly performed surgical procedures at 32 community hospitals in the southeastern United States from 2013 to 2018. SSI prevalence rates were calculated for each year and were stratified by procedure and causative pathogen.
Results:
Over the 6-year study period, 3,561 complex (deep incisional or organ-space) SSIs occurred following 669,467 total surgeries (prevalence rate, 0.53 infections per 100 procedures). The overall complex SSI prevalence rate did not change significantly during the study period: 0.58 of 100 procedures in 2013 versus 0.53 of 100 procedures in 2018 (prevalence rate ratio [PRR], 0.84; 95% CI, 0.66–1.08; P = .16). Methicillin-sensitive Staphylococcus aureus (MSSA) complex SSIs (n = 480, 13.5%) were more common than complex SSIs caused by methicillin-resistant S. aureus (MRSA; n = 363, 10.2%).
Conclusions:
The complex SSI rate did not decrease in our cohort of community hospitals from 2013 to 2018, which is a change from prior comparisons. The reason for this stagnation is unclear. Additional research is needed to determine the proportion of or remaining SSIs that are preventable and what measures would be effective to further reduce SSI rates.
Head impact exposure (HIE) in youth football is a public health concern. The objective of this study was to determine if one season of HIE in youth football was related to cognitive changes.
Method:
Over 200 participants (ages 9–13) wore instrumented helmets for practices and games to measure the amount of HIE sustained over one season. Pre- and post-season neuropsychological tests were completed. Test score changes were calculated adjusting for practice effects and regression to the mean and used as the dependent variables. Regression models were calculated with HIE variables predicting neuropsychological test score changes.
Results:
For the full sample, a small effect was found with season average rotational values predicting changes in list-learning such that HIE was related to negative score change: standardized beta (β) = -.147, t(205) = -2.12, and p = .035. When analyzed by age clusters (9–10, 11–13) and adding participant weight to models, the R2 values increased. Splitting groups by weight (median split), found heavier members of the 9–10 cohort with significantly greater change than lighter members. Additionaly, significantly more participants had clinically meaningful negative changes: X2 = 10.343, p = .001.
Conclusion:
These findings suggest that in the 9–10 age cluster, the average seasonal level of HIE had inverse, negative relationships with cognitive change over one season that was not found in the older group. The mediation effects of age and weight have not been explored previously and appear to contribute to the effects of HIE on cognition in youth football players.
This paper describes a collaborative approach to professional learning that has provided an opportunity for refreshed practices and growth in capacity in schools supporting students with various learning needs in several schools that are part of the Association of Independent Schools in the Australian Capital Territory. An action research approach to professional learning for school staff was facilitated with the participating schools in 2018/2019, centred on the Nationally Consistent Collection of Data on School Students with Disability.
Commercialization of 2,4-D–tolerant crops is a major concern for sweetpotato producers because of potential 2,4-D drift that can cause severe crop injury and yield reduction. A field study was initiated in 2014 and repeated in 2015 to assess impacts of reduced rates of 2,4-D, glyphosate, or a combination of 2,4-D with glyphosate on sweetpotato. In one study, 2,4-D and glyphosate were applied alone and in combination at 1/10, 1/100, 1/250, 1/500, 1/750, and 1/1,000 of anticipated field use rates (1.05 kg ha−1 for 2,4-D and 1.12 kg ha−1 for glyphosate) to ‘Beauregard’ sweetpotato at storage root formation (10 days after transplanting [DAP]). In a separate study, all these treatments were applied to ‘Beauregard’ sweetpotato at storage root development (30 DAP). Injury with 2,4-D alone or in combination with glyphosate was generally equal or greater than with glyphosate applied alone at equivalent herbicide rates, indicating that injury is attributable mostly to 2,4-D in the combination. There was a quadratic increase in crop injury and quadratic decrease in crop yield (with respect to most yield grades) with increased rate of 2,4-D applied alone or in combination with glyphosate applied at storage root development. However, neither the results of this relationship nor of the significance of herbicide rate were observed on crop injury or sweetpotato yield when herbicide application occurred at storage root formation, with a few exceptions. In general, crop injury and yield reduction were greatest at the highest rate (1/10×) of 2,4-D applied alone or in combination with glyphosate, although injury observed at lower rates was also a concern after initial observation by sweetpotato producers. However, in some cases, yield reduction of U.S. no.1 and marketable grades was also observed after application of 1/250×, 1/100×, or 1/10× rates of 2,4-D alone or with glyphosate when applied at storage root development.
A major concern of sweetpotato producers is the potential negative effects from herbicide drift or sprayer contamination events when dicamba is applied to nearby dicamba-resistant crops. A field study was initiated in 2014 and repeated in 2015 to assess the effects of reduced rates of N,N-Bis-(3-aminopropyl)methylamine (BAPMA) or diglycloamine (DGA) salt of dicamba, glyphosate, or a combination of these individually in separate trials with glyphosate on sweetpotato. Reduced rates of 1/10, 1/100, 1/250, 1/500, 1/750, and 1/1,000 of the 1× use rate of each dicamba formulation at 0.56 kg ha−1, glyphosate at 1.12 kg ha−1, and a combination of the two at aforementioned rates were applied to ‘Beauregard’ sweetpotato at storage root formation (10 d after transplanting) in one trial and storage root development (30 d after transplanting) in a separate trial. Injury with each salt of dicamba (BAPMA or DGA) applied alone or with glyphosate was generally equal to or greater than glyphosate applied alone at equivalent rates, indicating that injury is most attributable to the dicamba in the combination. There was a quadratic increase in crop injury and a quadratic decrease in crop yield (with respect to most yield grades) observed with an increased herbicide rate of dicamba applied alone or in combination with glyphosate applied at storage root development. However, with a few exceptions, neither this relationship nor the significance of herbicide rate was observed on crop injury or sweetpotato yield when herbicide application occurred at the storage root formation stage. In general, crop injury and yield reduction were greatest at the highest rate (1/10×) of either salt of dicamba applied alone or in combination with glyphosate, although injury observed at lower rates would be cause for concern after initial observation by sweetpotato producers. However, in some cases yield reduction of No.1 and marketable grades was observed following 1/250×, 1/100×, or 1/10× application rates of dicamba alone or with glyphosate when applied at storage root development.
Regulatory impact analyses (RIAs) weigh the benefits of regulations against the burdens they impose and are invaluable tools for informing decision makers. We offer 10 tips for nonspecialist policymakers and interested stakeholders who will be reading RIAs as consumers.
1. Core problem: Determine whether the RIA identifies the core problem (compelling public need) the regulation is intended to address.
2. Alternatives: Look for an objective, policy-neutral evaluation of the relative merits of reasonable alternatives.
3. Baseline: Check whether the RIA presents a reasonable “counterfactual” against which benefits and costs are measured.
4. Increments: Evaluate whether totals and averages obscure relevant distinctions and trade-offs.
5. Uncertainty: Recognize that all estimates involve uncertainty, and ask what effect key assumptions, data, and models have on those estimates.
6. Transparency: Look for transparency and objectivity of analytical inputs.
7. Benefits: Examine how projected benefits relate to stated objectives.
8. Costs: Understand what costs are included.
9. Distribution: Consider how benefits and costs are distributed.
10. Symmetrical treatment: Ensure that benefits and costs are presented symmetrically.
This chapter deals with the implications of uncertainty in the practice of climate modelling for communicating model-based findings to decision-makers, particularly high-resolution predictions intended to inform decision-making on adaptation to climate change. Our general claim is that methodological reflections on uncertainty in scientific practices should provide guidance on how their results can be used more responsibly in decision support. In the case of decisions that need to be made to adapt to climate change, societal actors, both public and private, are confronted with deep uncertainty. In fact, it has been argued that some of the questions these actors may ask ‘cannot be answered by science’. In this chapter, the notions of ‘reliability’ are examined critically; in particular the manner(s) in which the reliability of climate model findings pertaining to model-based high-resolution climate predictions is communicated. A broader discussion of these issues can be found in the chapter by Beck, in this volume.
Findings can be considered ‘reliable’ in many different ways. Often only a statistical notion of reliability is implied, but in this chapter we consider wider variations on the meaning of ‘reliability’, some more relevant to decision support than the mere uncertainty in a particular calculation.
The Chalk Group of southern and eastern England preserves a rich marine fauna of Late Cretaceous age. In this work, first published in seven parts between 1902 and 1912, Arthur Smith Woodward (1864–1944) provides what remains the principal account of fossil fishes from these deposits. Woodward describes and illustrates over fifty genera of ray-finned, lobe-finned, and cartilaginous fishes. The three-dimensional preservation of some Chalk fishes allows Woodward to describe aspects of anatomy not visible in heavily compressed fossils of similar age from other localities. Woodward finds that the fine detail apparent in bony fish skulls from the Chalk provides evidence of a closer correspondence between Cretaceous species and their modern relatives than had previously been anticipated. This monograph represents one of Woodward's last truly monumental contributions on fossil fishes, and was completed at around the time his scientific attention became increasingly dedicated to the now infamous Piltdown Man.
The Purbeck and Wealden formations of southern England represent marginal marine and continental deposition during the latest Jurassic and Early Cretaceous periods. More famous for their fossil dinosaurs and mammals, these units also yield the remains of fishes. In this work, first published in three parts between 1916 and 1919, Arthur Smith Woodward (1864–1944) provides the most extensive overview of the Purbeck and Wealden ichthyofauna, describing and illustrating some thirty genera of cartilaginous, lobe-finned, and ray-finned fishes. Woodward finds the preservation of fishes from both deposits to be suboptimal, but nevertheless comes to some important conclusions: he shows that the fish fauna of the English Wealden is nearly identical to that of the famous coeval deposits of Bernissart in Belgium, and finds that the species from both the Wealden and Purbeck show closer affinities with Jurassic forms than with later Cretaceous lineages like those described in his monograph on fishes from the Chalk.
On March 11, 2011, a magnitude 9.0 earthquake and subsequent tsunami damaged nuclear reactors at the Fukushima Daiichi complex in Japan, resulting in radionuclide release. In response, US officials augmented existing radiological screening at its ports of entry (POEs) to detect and decontaminate travelers contaminated with radioactive materials. During March 12 to 16, radiation screening protocols detected 3 travelers from Japan with external radioactive material contamination at 2 air POEs. Beginning March 23, federal officials collaborated with state and local public health and radiation control authorities to enhance screening and decontamination protocols at POEs. Approximately 543 000 (99%) travelers arriving directly from Japan at 25 US airports were screened for radiation contamination from March 17 to April 30, and no traveler was detected with contamination sufficient to require a large-scale public health response. The response highlighted synergistic collaboration across government levels and leveraged screening methods already in place at POEs, leading to rapid protocol implementation. Policy development, planning, training, and exercising response protocols and the establishment of federal authority to compel decontamination of travelers are needed for future radiological responses. Comparison of resource-intensive screening costs with the public health yield should guide policy decisions, given the historically low frequency of contaminated travelers arriving during radiological disasters.
(Disaster Med Public Health Preparedness. 2012;6:291–296)
Dimilin (25% wettable powder) was mixed in water and sprayed from a Grumman Agcat aircraft equipped with four micronair units at the rate of 70 g (active ingredients) / 4,67 L/ha (1 oz/0.5 U.S. gal per acre) on two stands of trembling aspen, Populus tremuloides Michx., heavily infested with forest tent caterpillar, Malacosoma disstria Hübner. The material was applied when the insects were in the first and second instars and the trees were starting to flush. Spray deposit analysis using a dye, Rhodamine-B, in the spray mix and spray plates in the plots indicated that conditions for spraying in the morning were better than those in the evening as expected. Total control of the forest tent caterpillar with very little defoliation of the trees was achieved.
Mixtures of the juvenile hormone analogue (JHA) methoprene and each of three benzoylphenylureas (BPUs) were fed to sixth-instar western spruce budworm, Choristoneura occidentalis Freeman. The BPUs tested were diflubenzuron, BAY SIR 8514 (N-[(trifluoromethoxy)phenyl]carbamoyl-2-chlorobenzamide), and EL-127063 (N-[[[5-(4-bromphenyl)-6-metnyl-2-pyrazinyl]amino]carbonyl]-2-chlorobenzamide). Mixtures consisted of JHA:BPU combined in 1:9 proportions. Ingestion of methoprene combined with BAY SIR 8514 or diflubenzuron resulted in significantly lower mortality than expected under a simple model of uncorrelated, independent action. Ingestion of the mixture of methoprene and EL-127063, however, resulted in significantly enhanced toxicity over the upper response range (> 50% mortality).
1-(4-chlorophenyl)-3-(2,6-difluorobenzoyl)-urea when ingested by the last two larval instars of the spruce budworm, Choristoneura fumiferana, inhibits cuticle development leading to morphogenetic deformities in the pupal stage. Laboratory and greenhouse studies indicate that this material could be used to control natural populations of spruce budworm.