We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the Peierls barrier $P_{\omega }(\xi )$ for a broad class of monotone variational problems. These problems arise naturally in solid state physics and from Hamiltonian twist maps. We start by deriving an estimate for the difference $\vert P_{\omega }(\xi ) - P_{q/p}(\xi ) \vert $ of the Peierls barriers of rotation numbers $\omega \in {{\mathbb{R}}}$ and $q/p\in {\mathbb{Q}}$. A similar estimate was obtained by Mather [Modulus of continuity for Peierls’s barrier. Proc. NATO Advanced Research Workshop on Periodic Solutions of Hamiltonian Systems and Related Topics (Il Ciocco, Italy, 13–18 October 1986) (NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 209). Eds. P. H. Rabinowitz, A. Ambrosetti and I. Eckeland. D. Reidel, Dordrecht, 1987, pp. 177–202] in the context of twist maps, but our proof is different and applies more generally. It follows from the estimate that $\omega \mapsto P_{\omega }(\xi )$ is continuous at irrational points. Moreover, we show that the Peierls barrier depends continuously on parameters and hence that the property that a monotone variational problem admits a lamination of minimizers of rotation number $\omega \in {{\mathbb{R}}}\delimiter "026E30F {\mathbb{Q}}$ is open in the $C^1$-topology.
Variational monotone recurrence relations arise in solid state physics as generalizations of the Frenkel–Kontorova model for a ferromagnetic crystal. For such problems, Aubry–Mather theory establishes the existence of ‘ground states’ or ‘global minimizers’ of arbitrary rotation number. A nearest neighbor crystal model is equivalent to a Hamiltonian twist map. In this case, the global minimizers have a special property: they can only cross once. As a non-trivial consequence, every one of them has the Birkhoff property. In crystals with a larger range of interaction and for higher order recurrence relations, the single crossing property does not hold and there can exist global minimizers that are not Birkhoff. In this paper we investigate the crossings of global minimizers. Under a strong twist condition, we prove the following dichotomy: they are either Birkhoff, and thus very regular, or extremely irregular and non-physical: they then grow exponentially and oscillate. For Birkhoff minimizers, we also prove certain strong ordering properties that are well known for twist maps.
As participants in the MASIE-project, we attended the summer school Mechanics and Symmetry in Peyresq, France, during the first two weeks of September 2000. These lecture notes are based on the notes we took there from Professor Meyer's lecture series “N-Body Problems”.
The N-body problem is a famous classical problem. It consists in describing the motion of N planets that interact with a gravitational force. Already in 1772, Euler described the three-body problem in his effort to study the motion of the moon. In 1836 Jacobi brought forward an even more specific part of the three body problem, namely that in which one of the planets has a very small mass. This system is the topic of this paper and is nowadays called the restricted three-body problem. It is a conservative system with two degrees of freedom, which gained extensive study in mechanics.
The N-body problem has always been a major topic in mathematics and physics. In 1858, Dirichlet claimed to have found a general method to treat any problem in mechanics. In particular, he said to have proven the stability of the planetary system. This statement is still questionable because he passed away without leaving any proof. Nevertheless, it initiated Weierstrass and his students Kovalevski and Mittag-Leffler to try and rediscover the method mentioned by Dirichlet.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.