We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The First Large Absorption Survey in H i (FLASH) is a large-area radio survey for neutral hydrogen in and around galaxies in the intermediate redshift range 0.4 < z < 1.0, using the 21-cm H i absorption line as a probe of cold neutral gas. The survey uses the ASKAP radio telescope and will cover 24,000 deg2 of sky over the next five years. FLASH breaks new ground in two ways – it is the first large H i absorption survey to be carried out without any optical preselection of targets, and we use an automated Bayesian line-finding tool to search through large datasets and assign a statistical significance to potential line detections. Two Pilot Surveys, covering around 3000 deg2 of sky, were carried out in 2019-22 to test and verify the strategy for the full FLASH survey. The processed data products from these Pilot Surveys (spectral-line cubes, continuum images, and catalogues) are public and available online. In this paper, we describe the FLASH spectral-line and continuum data products and discuss the quality of the H i spectra and the completeness of our automated line search. Finally, we present a set of 30 new H i absorption lines that were robustly detected in the Pilot Surveys, almost doubling the number of known H i absorption systems at 0.4 < z < 1. The detected lines span a wide range in H i optical depth, including three lines with a peak optical depth τ > 1, and appear to be a mixture of intervening and associated systems. Interestingly, around two-thirds of the lines found in this untargeted sample are detected against sources with a peaked-spectrum radio continuum, which are only a minor (5-20%) fraction of the overall radio-source population. The detection rate for H i absorption lines in the Pilot Surveys (0.3 to 0.5 lines per 40 deg2 ASKAP field) is a factor of two below the expected value. One possible reason for this is the presence of a range of spectral-line artefacts in the Pilot Survey data that have now been mitigated and are not expected to recur in the full FLASH survey. A future paper in this series will discuss the host galaxies of the H i absorption systems identified here.
The Australian SKA Pathfinder (ASKAP) offers powerful new capabilities for studying the polarised and magnetised Universe at radio wavelengths. In this paper, we introduce the Polarisation Sky Survey of the Universe’s Magnetism (POSSUM), a groundbreaking survey with three primary objectives: (1) to create a comprehensive Faraday rotation measure (RM) grid of up to one million compact extragalactic sources across the southern ∼ 50 per cent of the sky (20,630 deg2); (2) to map the intrinsic polarisation and RM properties of a wide range of discrete extragalactic and Galactic objects over the same area; and (3) to contribute interferometric data with excellent surface brightness sensitivity, which can be combined with single-dish data to study the diffuse Galactic interstellar medium. Observations for the full POSSUM survey commenced in May 2023 and are expected to conclude by mid-2028. POSSUM will achieve an RM grid density of around 30–50 RMs per square degree with a median measurement uncertainty of ∼1 rad m−2. The survey operates primarily over a frequency range of 800–1088 MHz, with an angular resolution of 20″ and a typical RMS sensitivity in Stokes Q or U of 18 μJy beam−1. Additionally, the survey will be supplemented by similar observations covering 1296–1440 MHz over 38 per cent of the sky. POSSUM will enable the discovery and detailed investigation of magnetized phenomena in a wide range of cosmic environments, including the intergalactic medium and cosmic web, galaxy clusters and groups, active galactic nuclei and radio galaxies, the Magellanic System and other nearby galaxies, galaxy halos and the circumgalactic medium, and the magnetic structure of the Milky Way across a very wide range of scales, as well as the interplay between these components. This paper reviews the current science case developed by the POSSUM Collaboration and provides an overview of POSSUM’s observations, data processing, outputs, and its complementarity with other radio and multi-wavelength surveys, including future work with the SKA.
Guideline-based tobacco treatment is infrequently offered. Electronic health record-enabled patient-generated health data (PGHD) has the potential to increase patient treatment engagement and satisfaction.
Methods:
We evaluated outcomes of a strategy to enable PGHD in a medical oncology clinic from July 1, 2021 to December 31, 2022. Among 12,777 patients, 82.1% received a tobacco screener about use and interest in treatment as part of eCheck-in via the patient portal.
Results:
We attained a broad reach (82.1%) and moderate response rate (30.9%) for this low-burden PGHD strategy. Patients reporting current smoking (n = 240) expressed interest in smoking cessation medication (47.9%) and counseling (35.8%). As a result of patient requests via PGHD, most tobacco treatment requests by patients were addressed by their providers (40.6–80.3%). Among patients with active smoking, those who received/answered the screener (n = 309 ) were more likely to receive tobacco treatment compared with usual care patients who did not have the patient portal (n = 323) (OR = 2.72, 95% CI = 1.93–3.82, P < 0.0001) using propensity scores to adjust for the effect of age, sex, race, insurance, and comorbidity. Patients who received yet ignored the screener (n = 1024) compared with usual care were also more likely to receive tobacco treatment, but to a lesser extent (OR = 2.20, 95% CI = 1.68–2.86, P < 0.0001). We mapped observed and potential benefits to the Translational Science Benefits Model (TSBM).
Discussion:
PGHD via patient portal appears to be a feasible, acceptable, scalable, and cost-effective approach to promote patient-centered care and tobacco treatment in cancer patients. Importantly, the PGHD approach serves as a real world example of cancer prevention leveraging the TSBM.
Evaluate knowledge and beliefs about dietary nitrate among United Kingdom (UK)-based adults.
Design:
An online questionnaire was administered to evaluate knowledge and beliefs about dietary nitrate. Overall knowledge of dietary nitrate was quantified using a twenty-one-point Nitrate Knowledge Index. Responses were compared between socio-demographic groups.
Setting:
UK.
Participants:
A nationally representative sample of 300 adults.
Results:
Only 19 % of participants had heard of dietary nitrate prior to completing the questionnaire. Most participants (∼70 %) were unsure about the effects of dietary nitrate on health parameters (e.g. blood pressure, cognitive function and cancer risk) or exercise performance. Most participants were unsure of the average population intake (78 %) and acceptable daily intake (83 %) of nitrate. Knowledge of dietary sources of nitrate was generally low, with only ∼30 % of participants correctly identifying foods with higher or lower nitrate contents. Almost none of the participants had deliberately purchased, or avoided purchasing, a food based around its nitrate content. Nitrate Knowledge Index scores were generally low (median (interquartile range (IQR)): 5 (8)), but were significantly higher in individuals who were currently employed v. unemployed (median (IQR): 5 (7) v. 4 (7); P < 0·001), in those with previous nutrition education v. no nutrition education (median (IQR): 6 (7) v. 4 (8); P = 0·012) and in individuals who had heard of nitrate prior to completing the questionnaire v. those who had not (median (IQR): 9 (8) v. 4 (7); P < 0·001).
Conclusions:
This study demonstrates low knowledge around dietary nitrate in UK-based adults. Greater education around dietary nitrate may be valuable to help individuals make more informed decisions about their consumption of this compound.
Auditory verbal hallucinations (AVHs) in schizophrenia have been suggested to arise from failure of corollary discharge mechanisms to correctly predict and suppress self-initiated inner speech. However, it is unclear whether such dysfunction is related to motor preparation of inner speech during which sensorimotor predictions are formed. The contingent negative variation (CNV) is a slow-going negative event-related potential that occurs prior to executing an action. A recent meta-analysis has revealed a large effect for CNV blunting in schizophrenia. Given that inner speech, similar to overt speech, has been shown to be preceded by a CNV, the present study tested the notion that AVHs are associated with inner speech-specific motor preparation deficits.
Objectives
The present study aimed to provide a useful framework for directly testing the long-held idea that AVHs may be related to inner speech-specific CNV blunting in patients with schizophrenia. This may hold promise for a reliable biomarker of AVHs.
Methods
Hallucinating (n=52) and non-hallucinating (n=45) patients with schizophrenia, along with matched healthy controls (n=42), participated in a novel electroencephalographic (EEG) paradigm. In the Active condition, they were asked to imagine a single phoneme at a cue moment while, precisely at the same time, being presented with an auditory probe. In the Passive condition, they were asked to passively listen to the auditory probes. The amplitude of the CNV preceding the production of inner speech was examined.
Results
Healthy controls showed a larger CNV amplitude (p = .002, d = .50) in the Active compared to the Passive condition, replicating previous results of a CNV preceding inner speech. However, both patient groups did not show a difference between the two conditions (p > .05). Importantly, a repeated measure ANOVA revealed a significant interaction effect (p = .007, ηp2 = .05). Follow-up contrasts showed that healthy controls exhibited a larger CNV amplitude in the Active condition than both the hallucinating (p = .013, d = .52) and non-hallucinating patients (p < .001, d = .88). No difference was found between the two patient groups (p = .320, d = .20).
Conclusions
The results indicated that motor preparation of inner speech in schizophrenia was disrupted. While the production of inner speech resulted in a larger CNV than passive listening in healthy controls, which was indicative of the involvement of motor planning, patients exhibited markedly blunted motor preparatory activity to inner speech. This may reflect dysfunction in the formation of corollary discharges. Interestingly, the deficits did not differ between hallucinating and non-hallucinating patients. Future work is needed to elucidate the specificity of inner speech-specific motor preparation deficits with AVHs. Overall, this study provides evidence in support of atypical inner speech monitoring in schizophrenia.
An early and comprehensive neurobiological characterization of severe mental disorders could elucidate mechanistic pathways, aid the development of novel therapeutics, and therefore enable timely and targeted intervention in at-risk youth and young adults. Therefore, we present an unsupervised transdiagnostic machine learning approach to investigate shared and distinct patterns of early-stage depressive and psychotic disorders on multiple clinical and neurobiological levels.
Objectives
To derive multi-level neurobiological and clinical signatures of early-stage affective and psychotic disorders in adolescents and young adults.
Methods
From the multicenter prospective European PRONIA cohort, we acquired data from 678 individuals (51% female) comprising young, minimally medicated in- and outpatients with clinical high-risk (CHR) states for psychosis, with recent-onset depression (ROD) or psychosis (ROP), and healthy control (HC) individuals. Within repeated nested cross-validation frameworks, we employed Sparse Partial Least Squares Analysis to detect associations between blood markers and grey matter volume (GMV), followed by support vector machine prediction of these signatures using biographical, clinical, neurocognitive, proteomic, and functional data.
Results
Our results demonstrated a psychosis staging signature separating ROP from CHR individuals via GMV patterns in the cortico-thalamo-cerebellar circuitry with a blood marker set of elevated of IL-6, TNF-α and CRP (ρ = 0.272; P = 0.002). A depression signature separated ROD from HC individuals via altered GMV in the limbic system with a blood marker set of elevated IL-1ß, IL-2, IL-4, S100B and BDNF (ρ = 0.186; P = 0.021). Only the psychosis staging signature showed a distinct proteomic enrichment regarding innate immune response, abnormal neutrophil function, cellular senescence, and anti-inflammatory drugs (Balanced Accuracy (BAC) = 87.73%; Area Under the Curve (AUC) = 0.94). Childhood trauma differentially predicted psychosis and depression signatures, while past level of functioning, personality and quality of life was predictive of both signatures (BAC = 67.19-78.00%; AUC = 0.71-0.83).
Image:
Image 2:
Image 3:
Conclusions
Psychosis and depression exhibit distinct multi-level signatures evident in early disease stages. Enhanced insight into these signatures could help delineate individual trajectories and potentially new mechanisms for pharmacological treatment.
Prior studies evaluating the impact of discontinuation of contact precautions (DcCP) on methicillin-resistant Staphylococcus aureus (MRSA) outcomes have characterized all healthcare-associated infections (HAIs) rather than those likely preventable by contact precautions. We aimed to analyze the impact of DcCP on the rate of MRSA HAI including transmission events identified through whole genome sequencing (WGS) surveillance.
Design:
Quasi experimental interrupted time series.
Setting:
Acute care medical center.
Participants:
Inpatients.
Methods:
The effect of DcCP (use of gowns and gloves) for encounters among patients with MRSA carriage was evaluated using time series analysis of MRSA HAI rates from January 2019 through December 2022, compared to WGS-defined attributable transmission events before and after DcCP in December 2020.
Results:
The MRSA HAI rate was 4.22/10,000 patient days before and 2.98/10,000 patient days after DcCP (incidence rate ratio [IRR] 0.71 [95% confidence interval 0.56–0.89]) with a significant immediate decrease (P = .001). There were 7 WGS-defined attributable transmission events before and 11 events after DcCP (incident rate ratio 0.90 [95% confidence interval 0.30–2.55]).
Conclusions:
DcCP did not result in an increase in MRSA HAI or, in WGS-defined attributable transmission events. Comprehensive analyses of the effect of transmission prevention measures should include outcomes specifically measuring transmission-associated HAI.
Ligula (Cestoda: Pseudophyllidea) infections in gudgeon (Gobio gobio) and roach (Rutilus rutilus) differ markedly in the pathology that is observed in the host, particularly with respect to a tissue response and the extent of inhibition of gonadal development. The entire internal transcribed spacer (ITS) region (ITS-1, 5.8S and ITS-2) and the large subunit domains D1–D3 were sequenced and compared in parasites from these fish from Lough Neagh, Northern Ireland, together with a single specimen from minnow (Phoxinus phoxinus) from Wales. Sufficient differences were observed between parasites from R. rutilus and G. gobio to support the suggestion that they may represent different strains/species. In contrast, Ligula from P. phoxinus closely resembled those from R. rutilus. Ligula infections in G. gobio were recorded prior to the introduction of R. rutilus. The co-existence of separate strains or species of Ligula in Lough Neagh probably resulted from the introduction of R. rutilus to these waters, correlated with an increase in the number of great crested grebes (Podiceps cristatus).
Preventing psychiatric admissions holds benefits for patients as well as healthcare systems. The Clinical Global Impression-Severity (CGI-S) scale is a 7-point measurement of symptom severity, independent of diagnosis, which has shown capability of predicting risk of hospitalisation in schizophrenia. Due to its routine use in clinical practice and ease of administration, it may have potential as a transdiagnostic predictor of hospitalisation.
Objectives
To investigate whether early trajectories of CGI-S scores predict risk of hospitalisation over a 6 month-follow-up period.
Methods
A retrospective cohort study was conducted, analysing Electronic Health Record (EHR) data from the NeuroBlu Database (Patel et al. BMJ Open 2022;12:e057227). Patients were included if they had a psychiatric diagnosis and at least 5 recorded CGI-S scores within a 2-month period, defined as the ‘index’ period. The relationship between early CGI-S trajectories and risk of hospitalisation was investigated using Cox regression. The analysis was adjusted for age, gender, race, number of years in education, and psychiatric diagnosis. Early CGI-S trajectories were estimated as clinical severity (defined as the mean CGI-S score during the index period) and clinical instability (defined as a generalised Root Mean Squared Subsequent Differences of all CGI-S scores recorded during the index period). The primary outcome was time to psychiatric hospitalisation up to 6 months following the index period. Patients who had been hospitalised before or within the index period were excluded.
Results
A total of 36,914 patients were included (mean [SD] age: 29.7 [17.5] years; 57.3% female). Clinical instability (hazard ratio: 1.09, 95% CI 1.07-1.10, p<0.001) and severity (hazard ratio: 1.11, 95% CI 1.09-1.12, p<0.001) independently predicted risk of hospitalisation. These associations were consistent across all psychiatric diagnoses. Patients in the top 50% of severity and/or instability were at a 45% increased risk of hospitalisation compared to those in the bottom 50% (Figure 1).
Image:
Conclusions
Early CGI-S trajectories reflecting clinical severity and instability independently predict risk of hospitalisation across diagnoses. This risk was compounded when instability and severity were present together. These results have translation potential in predicting individuals who are at high risk of hospitalisation and could benefit from preventative strategies to mitigate this risk.
Disclosure of Interest
E. Palmer Employee of: Holmusk, M. Taquet Consultant of: Holmusk, K. Griffiths Employee of: Holmusk, S. Ker Employee of: Holmusk, C. Liman Employee of: Holmusk, S. N. Wee Employee of: Holmusk, S. Kollins Employee of: Holmusk, R. Patel Grant / Research support from: National Institute of Health Research (NIHR301690); Medical Research Council (MR/S003118/1); Academy of Medical Sciences (SGL015/1020); Janssen, Employee of: Holmusk
Optimizing research on the developmental origins of health and disease (DOHaD) involves implementing initiatives maximizing the use of the available cohort study data; achieving sufficient statistical power to support subgroup analysis; and using participant data presenting adequate follow-up and exposure heterogeneity. It also involves being able to undertake comparison, cross-validation, or replication across data sets. To answer these requirements, cohort study data need to be findable, accessible, interoperable, and reusable (FAIR), and more particularly, it often needs to be harmonized. Harmonization is required to achieve or improve comparability of the putatively equivalent measures collected by different studies on different individuals. Although the characteristics of the research initiatives generating and using harmonized data vary extensively, all are confronted by similar issues. Having to collate, understand, process, host, and co-analyze data from individual cohort studies is particularly challenging. The scientific success and timely management of projects can be facilitated by an ensemble of factors. The current document provides an overview of the ‘life course’ of research projects requiring harmonization of existing data and highlights key elements to be considered from the inception to the end of the project.
We present the first unbiased survey of neutral hydrogen absorption in the Small Magellanic Cloud. The survey utilises pilot neutral hydrogen observations with the Australian Square Kilometre Array Pathfinder telescope as part of the Galactic Australian Square Kilometre Array Pathfinder neutral hydrogen project whose dataset has been processed with the Galactic Australian Square Kilometre Array Pathfinder-HI absorption pipeline, also described here. This dataset provides absorption spectra towards 229 continuum sources, a 275% increase in the number of continuum sources previously published in the Small Magellanic Cloud region, as well as an improvement in the quality of absorption spectra over previous surveys of the Small Magellanic Cloud. Our unbiased view, combined with the closely matched beam size between emission and absorption, reveals a lower cold gas faction (11%) than the 2019 ATCA survey of the Small Magellanic Cloud and is more representative of the Small Magellanic Cloud as a whole. We also find that the optical depth varies greatly between the Small Magellanic Cloud’s bar and wing regions. In the bar we find that the optical depth is generally low (correction factor to the optically thin column density assumption of
$\mathcal{R}_{\mathrm{HI}} \sim 1.04$
) but increases linearly with column density. In the wing however, there is a wide scatter in optical depth despite a tighter range of column densities.
Severe paediatric obstructive sleep apnoea in typically developing children with adenotonsillar hypertrophy is primarily managed surgically. Non-emergency ENT surgery was paused early in the coronavirus disease 2019 pandemic and children were offered medical management for obstructive sleep apnoea.
Methods
A service evaluation was performed to assess the impact of continuous positive airway pressure alongside medical management for severe obstructive sleep apnoea.
Results
Over 5 months during 2020, in a tertiary care setting, two children (one boy and one girl), aged 2.7 years and 4.1 years, were offered continuous positive airway pressure and medical treatments for severe obstructive sleep apnoea whilst surgery was paused during the coronavirus disease 2019 pandemic. Both children failed to establish continuous positive airway pressure therapy because of ongoing disturbed sleep on ventilation, and they proceeded to adenotonsillectomy. Sleep-Related Breathing Disorder scale scores improved following surgical intervention.
Conclusion
Continuous positive airway pressure therapy is poorly tolerated in children with severe obstructive sleep apnoea secondary to adenotonsillar hypertrophy. Surgery remains the most appropriate treatment.
We present the most sensitive and detailed view of the neutral hydrogen (
${\rm H\small I}$
) emission associated with the Small Magellanic Cloud (SMC), through the combination of data from the Australian Square Kilometre Array Pathfinder (ASKAP) and Parkes (Murriyang), as part of the Galactic Australian Square Kilometre Array Pathfinder (GASKAP) pilot survey. These GASKAP-HI pilot observations, for the first time, reveal
${\rm H\small I}$
in the SMC on similar physical scales as other important tracers of the interstellar medium, such as molecular gas and dust. The resultant image cube possesses an rms noise level of 1.1 K (
$1.6\,\mathrm{mJy\ beam}^{-1}$
)
$\mathrm{per}\ 0.98\,\mathrm{km\ s}^{-1}$
spectral channel with an angular resolution of
$30^{\prime\prime}$
(
${\sim}10\,\mathrm{pc}$
). We discuss the calibration scheme and the custom imaging pipeline that utilises a joint deconvolution approach, efficiently distributed across a computing cluster, to accurately recover the emission extending across the entire
${\sim}25\,\mathrm{deg}^2$
field-of-view. We provide an overview of the data products and characterise several aspects including the noise properties as a function of angular resolution and the represented spatial scales by deriving the global transfer function over the full spectral range. A preliminary spatial power spectrum analysis on individual spectral channels reveals that the power law nature of the density distribution extends down to scales of 10 pc. We highlight the scientific potential of these data by comparing the properties of an outflowing high-velocity cloud with previous ASKAP+Parkes
${\rm H\small I}$
test observations.
The Variables and Slow Transients Survey (VAST) on the Australian Square Kilometre Array Pathfinder (ASKAP) is designed to detect highly variable and transient radio sources on timescales from 5 s to
$\sim\!5$
yr. In this paper, we present the survey description, observation strategy and initial results from the VAST Phase I Pilot Survey. This pilot survey consists of
$\sim\!162$
h of observations conducted at a central frequency of 888 MHz between 2019 August and 2020 August, with a typical rms sensitivity of
$0.24\ \mathrm{mJy\ beam}^{-1}$
and angular resolution of
$12-20$
arcseconds. There are 113 fields, each of which was observed for 12 min integration time, with between 5 and 13 repeats, with cadences between 1 day and 8 months. The total area of the pilot survey footprint is 5 131 square degrees, covering six distinct regions of the sky. An initial search of two of these regions, totalling 1 646 square degrees, revealed 28 highly variable and/or transient sources. Seven of these are known pulsars, including the millisecond pulsar J2039–5617. Another seven are stars, four of which have no previously reported radio detection (SCR J0533–4257, LEHPM 2-783, UCAC3 89–412162 and 2MASS J22414436–6119311). Of the remaining 14 sources, two are active galactic nuclei, six are associated with galaxies and the other six have no multi-wavelength counterparts and are yet to be identified.
To determine the impact of electronic health record (EHR)–based interventions and test restriction on Clostridioides difficile tests (CDTs) and hospital-onset C. difficile infection (HO-CDI).
Design:
Quasi-experimental study in 3 hospitals.
Setting:
957-bed academic (hospital A), 354-bed (hospital B), and 175-bed (hospital C) academic-affiliated community hospitals.
Interventions:
Three EHR-based interventions were sequentially implemented: (1) alert when ordering a CDT if laxatives administered within 24 hours (January 2018); (2) cancellation of CDT orders after 24 hours (October 2018); (3) contextual rule-driven order questions requiring justification when laxative administered or lack of EHR documentation of diarrhea (July 2019). In February 2019, hospital C implemented a gatekeeper intervention requiring approval for all CDTs after hospital day 3. The impact of the interventions on C. difficile testing and HO-CDI rates was estimated using an interrupted time-series analysis.
Results:
C. difficile testing was already declining in the preintervention period (annual change in incidence rate [IR], 0.79; 95% CI, 0.72–0.87) and did not decrease further with the EHR interventions. The laxative alert was temporally associated with a trend reduction in HO-CDI (annual change in IR from baseline, 0.85; 95% CI, 0.75–0.96) at hospitals A and B. The gatekeeper intervention at hospital C was associated with level (IRR, 0.50; 95% CI, 0.42-0.60) and trend reductions in C. difficile testing (annual change in IR, 0.91; 95% CI, 0.85–0.98) and level (IRR 0.42; 95% CI, 0.22–0.81) and trend reductions in HO-CDI (annual change in IR, 0.68; 95% CI, 0.50–0.92) relative to the baseline period.
Conclusions:
Test restriction was more effective than EHR-based clinical decision support to reduce C. difficile testing in our 3-hospital system.
Faraday complexity describes whether a spectropolarimetric observation has simple or complex magnetic structure. Quickly determining the Faraday complexity of a spectropolarimetric observation is important for processing large, polarised radio surveys. Finding simple sources lets us build rotation measure grids, and finding complex sources lets us follow these sources up with slower analysis techniques or further observations. We introduce five features that can be used to train simple, interpretable machine learning classifiers for estimating Faraday complexity. We train logistic regression and extreme gradient boosted tree classifiers on simulated polarised spectra using our features, analyse their behaviour, and demonstrate our features are effective for both simulated and real data. This is the first application of machine learning methods to real spectropolarimetry data. With 95% accuracy on simulated ASKAP data and 90% accuracy on simulated ATCA data, our method performs comparably to state-of-the-art convolutional neural networks while being simpler and easier to interpret. Logistic regression trained with our features behaves sensibly on real data and its outputs are useful for sorting polarised sources by apparent Faraday complexity.
We present the first Faraday rotation measure (RM) grid study of an individual low-mass cluster—the Fornax cluster—which is presently undergoing a series of mergers. Exploiting commissioning data for the POlarisation Sky Survey of the Universe’s Magnetism (POSSUM) covering a ${\sim}34$ square degree sky area using the Australian Square Kilometre Array Pathfinder (ASKAP), we achieve an RM grid density of ${\sim}25$ RMs per square degree from a 280-MHz band centred at 887 MHz, which is similar to expectations for forthcoming GHz-frequency ${\sim}3\pi$-steradian sky surveys. These data allow us to probe the extended magnetoionic structure of the cluster and its surroundings in unprecedented detail. We find that the scatter in the Faraday RM of confirmed background sources is increased by $16.8\pm2.4$ rad m−2 within 1$^\circ$ (360 kpc) projected distance to the cluster centre, which is 2–4 times larger than the spatial extent of the presently detectable X-ray-emitting intracluster medium (ICM). The mass of the Faraday-active plasma is larger than that of the X-ray-emitting ICM and exists in a density regime that broadly matches expectations for moderately dense components of the Warm-Hot Intergalactic Medium. We argue that forthcoming RM grids from both targeted and survey observations may be a singular probe of cosmic plasma in this regime. The morphology of the global Faraday depth enhancement is not uniform and isotropic but rather exhibits the classic morphology of an astrophysical bow shock on the southwest side of the main Fornax cluster, and an extended, swept-back wake on the northeastern side. Our favoured explanation for these phenomena is an ongoing merger between the main cluster and a subcluster to the southwest. The shock’s Mach angle and stand-off distance lead to a self-consistent transonic merger speed with Mach 1.06. The region hosting the Faraday depth enhancement also appears to show a decrement in both total and polarised radio emission compared to the broader field. We evaluate cosmic variance and free-free absorption by a pervasive cold dense gas surrounding NGC 1399 as possible causes but find both explanations unsatisfactory, warranting further observations. Generally, our study illustrates the scientific returns that can be expected from all-sky grids of discrete sources generated by forthcoming all-sky radio surveys.
In this paper, we describe the system design and capabilities of the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope at the conclusion of its construction project and commencement of science operations. ASKAP is one of the first radio telescopes to deploy phased array feed (PAF) technology on a large scale, giving it an instantaneous field of view that covers $31\,\textrm{deg}^{2}$ at $800\,\textrm{MHz}$. As a two-dimensional array of 36$\times$12 m antennas, with baselines ranging from 22 m to 6 km, ASKAP also has excellent snapshot imaging capability and 10 arcsec resolution. This, combined with 288 MHz of instantaneous bandwidth and a unique third axis of rotation on each antenna, gives ASKAP the capability to create high dynamic range images of large sky areas very quickly. It is an excellent telescope for surveys between 700 and $1800\,\textrm{MHz}$ and is expected to facilitate great advances in our understanding of galaxy formation, cosmology, and radio transients while opening new parameter space for discovery of the unknown.
To evaluate broad-spectrum intravenous antibiotic use before and after the implementation of a revised febrile neutropenia management algorithm in a population of adults with hematologic malignancies.
Design:
Quasi-experimental study.
Setting and population:
Patients admitted between 2014 and 2018 to the Adult Malignant Hematology service of an acute-care hospital in the United States.
Methods:
Aggregate data for adult malignant hematology service were obtained for population-level antibiotic use: days of therapy (DOT), C. difficile infections, bacterial bloodstream infections, intensive care unit (ICU) length of stay, and in-hospital mortality. All rates are reported per 1,000 patient days before the implementation of an febrile neutropenia management algorithm (July 2014–May 2016) and after the intervention (June 2016–December 2018). These data were compared using interrupted time series analysis.
Results:
In total, 2,014 patients comprised 6,788 encounters and 89,612 patient days during the study period. Broad-spectrum intravenous (IV) antibiotic use decreased by 5.7% with immediate reductions in meropenem and vancomycin use by 22 (P = .02) and 15 (P = .001) DOT per 1,000 patient days, respectively. Bacterial bloodstream infection rates significantly increased following algorithm implementation. No differences were observed in the use of other antibiotics or safety outcomes including C. difficile infection, ICU length of stay, and in-hospital mortality.
Conclusions:
Reductions in vancomycin and meropenem were observed following the implementation of a more stringent febrile neutropenia management algorithm, without evidence of adverse outcomes. Successful implementation occurred through a collaborative effort and continues to be a core reinforcement strategy at our institution. Future studies evaluating patient-level data may identify further stewardship opportunities in this population.