The hydrogen effect on dislocation nucleation in FeAl single crystal with (100) surface orientation has been examined with the aid of a specifically designed nanoindentation setup for in situ electrochemical experiments. The effect of the electrochemical potential on the indent load–displacement curve, especially the unstable elastic-plastic transition (pop-in), was studied in detail. The observations showed a reduction in the pop-in load for both samples due to in situ hydrogen charging, which is reproducibly observed within sequential hydrogen charging and discharging. Clear evidence is provided that hydrogen atoms facilitate homogeneous dislocation nucleation.