We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $ {\mathcal C} $ be an algebraic curve and c be an analytically irreducible singular point of ${\mathcal C}$. The set ${\mathscr {L}_{\infty }}({\mathcal C})^c$ of arcs with origin c is an irreducible closed subset of the space of arcs on ${\mathcal C}$. We obtain a presentation of the formal neighborhood of the generic point of this set which can be interpreted in terms of deformations of the generic arc defined by this point. This allows us to deduce a strong connection between the aforementioned formal neighborhood and the formal neighborhood in the arc space of any primitive parametrization of the singularity c. This may be interpreted as the fact that analytically along ${\mathscr {L}_{\infty }}({\mathcal C})^c$ the arc space is a product of a finite dimensional singularity and an infinite dimensional affine space.
Let $k$ be field of characteristic zero. Let $f\in k[X,Y]$ be a nonconstant polynomial. We prove that the space of differential (formal) deformations of any formal general solution of the associated ordinary differential equation $f(y^{\prime },y)=0$ is isomorphic to the formal disc $\text{Spf}(k[[Z]])$.
In this note, we prove that the Drinfeld–Grinberg–Kazhdan theorem on the structure of formal neighborhoods of arc schemes at a nonsingular arc does not extend to the case of singular arcs.
We study the asymptotical behaviour of the moduli space of morphisms of given anticanonical degree from a rational curve to a split toric variety, when the degree goes to infinity. We obtain in this case a geometric analogue of Manin’s conjecture about rational points of bounded height on varieties defined over a global field. The study is led through a generating series whose coefficients lie in a Grothendieck ring of motives, the motivic height zeta function. In order to establish convergence properties of this function, we use a notion of motivic Euler product. It relies on a construction of Denef and Loeser which associates a virtual motive to a first order logic ring formula.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.