We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We explore the interplay between $\omega $-categoricity and pseudofiniteness for groups, and we conjecture that $\omega $-categorical pseudofinite groups are finite-by-abelian-by-finite. We show that the conjecture reduces to nilpotent p-groups of class 2, and give a proof that several of the known examples of $\omega $-categorical p-groups satisfy the conjecture. In particular, we show by a direct counting argument that for any odd prime p the ($\omega $-categorical) model companion of the theory of nilpotent class 2 exponent p groups, constructed by Saracino and Wood, is not pseudofinite, and that an $\omega $-categorical group constructed by Baudisch with supersimple rank 1 theory is not pseudofinite. We also survey some scattered literature on $\omega $-categorical groups over 50 years.
Answering a question of Junker and Ziegler, we construct a countable first order structure which is not ω-categorical, but does not have any proper nontrivial reducts, in either of two senses (model-theoretic, and group-theoretic). We also construct a strongly minimal set which is not ω-categorical but has no proper nontrivial reducts in the model-theoretic sense.
We give an example of an imaginary defined in certain valued fields with analytic structure which cannot be coded in the ‘geometric’ sorts which suffice to code all imaginaries in the corresponding algebraic setting.
This paper provides an overview of recent work by the authors and others on two topics in the model theory of finite structures. The point of view here differs from that usually associated with the term ‘finite model theory’, as presented for example in [21] or [46], in which the emphasis and motivation come primarily from computer science. Instead, the inspiration for this work has its origins in contemporary (infinite) model theoretic themes such as dimension, independence, and various measures of the complexity of definable sets. Each of the topics deals with classes of finite structures for first-order logic that are isolated by conditions that are drawn from these model-theoretic considerations. Moreover, in both cases, connections exist to areas in infinite model theory such as stability and simplicity theory, and o-minimality. This survey is intended for both mathematical logicians and computer scientists whose work focuses on logical aspects of the subject.
The first theme concerns asymptotic classes of finite structures. This subject has its origins in the model theory of finite fields, via the work of Chatzidakis, van den Dries and Macintyre [13] (see Theorem 4.2.1) and the earlier model theory of finite fields developed by Ax [4], and ultimately rests on the Lang-Weil bounds for the number of points in a finite field of an irreducible variety defined over that field.
The first of a two volume set showcasing current research in model theory and its connections with number theory, algebraic geometry, real analytic geometry and differential algebra. Each volume contains a series of expository essays and research papers around the subject matter of a Newton Institute Semester on Model Theory and Applications to Algebra and Analysis. The articles convey outstanding new research on topics such as model theory and conjectures around Mordell-Lang; arithmetic of differential equations, and Galois theory of difference equations; model theory and complex analytic geometry; o-minimality; model theory and noncommutative geometry; definable groups of finite dimension; Hilbert's tenth problem; and Hrushovski constructions. With contributions from so many leaders in the field, this book will undoubtedly appeal to all mathematicians with an interest in model theory and its applications, from graduate students to senior researchers and from beginners to experts.
The second of a two volume set showcasing current research in model theory and its connections with number theory, algebraic geometry, real analytic geometry and differential algebra. Each volume contains a series of expository essays and research papers around the subject matter of a Newton Institute Semester on Model Theory and Applications to Algebra and Analysis. The articles convey outstanding new research on topics such as model theory and conjectures around Mordell-Lang; arithmetic of differential equations, and Galois theory of difference equations; model theory and complex analytic geometry; o-minimality; model theory and non-commutative geometry; definable groups of finite dimension; Hilbert's tenth problem; and Hrushovski constructions. With contributions from so many leaders in the field, this book will undoubtedly appeal to all mathematicians with an interest in model theory and its applications, from graduate students to senior researchers and from beginners to experts.
This book addresses a gap in the model-theoretic understanding of valued fields that had limited the interactions of model theory with geometry. It contains significant developments in both pure and applied model theory. Part I of the book is a study of stably dominated types. These form a subset of the type space of a theory that behaves in many ways like the space of types in a stable theory. This part begins with an introduction to the key ideas of stability theory for stably dominated types. Part II continues with an outline of some classical results in the model theory of valued fields and explores the application of stable domination to algebraically closed valued fields. The research presented here is made accessible to the general model theorist by the inclusion of the introductory sections of each part.
These two volumes contain both expository and research papers in the general area of model theory and its applications to algebra and analysis. The volumes grew out of the semester on “Model Theory and Applications to Algebra and Analysis” which took place at the Isaac Newton Institute (INI), Cambridge, from January to July 2005. We, the editors, were also the organizers of the programme. The contributors have been selected from among the participants and their papers reflect many of the achievements and advances obtained during the programme. Also some of the expository papers are based on tutorials given at the March – April 2005 training workshop. We take this opportunity, both as editors of these volumes and organizers of the MAA programme, to thank the Isaac Newton Institute and its staff for supporting our programme and providing a perfect environment for mathematical research and collaboration.
The INI semester saw activity and progress in essentially all areas on the “applied” side of model theory: o'minimality, motivic integration, groups of finite Morley rank, and connections with number theory and geometry. With the exception of motivic integration and valued fields, these topics are well represented in the two volumes.
The collection of papers is more or less divided into (overlapping) themes, together with a few singularities. Aspects of the interaction between stability theory, differential and difference equations, and number theory, appear in the first six papers of volume I.
These two volumes contain both expository and research papers in the general area of model theory and its applications to algebra and analysis. The volumes grew out of the semester on “Model Theory and Applications to Algebra and Analysis” which took place at the Isaac Newton Institute (INI), Cambridge, from January to July 2005. We, the editors, were also the organizers of the programme. The contributors have been selected from among the participants and their papers reflect many of the achievements and advances obtained during the programme. Also some of the expository papers are based on tutorials given at the March-April 2005 training workshop. We take this opportunity, both as editors of these volumes and organizers of the MAA programme, to thank the Isaac Newton Institute and its staff for supporting our programme and providing a perfect environment for mathematical research and collaboration.
The INI semester saw activity and progress in essentially all areas on the “applied” side of model theory: o-minimality, motivic integration, groups of finite Morley rank, and connections with number theory and geometry. With the exception of motivic integration and valued fields, these topics are well represented in the two volumes.
The collection of papers is more or less divided into (overlapping) themes, together with a few singularities. Aspects of the interaction between stability theory, differential and difference equations, and number theory, appear in the first six papers of volume I.
Valuations are among the fundamental structures of number theory and of algebraic geometry. This was recognized early by model theorists, with gratifying results: Robinson's description of algebraically closed valued fields as the model completion of the theory of valued fields; the Ax-Kochen, Ershov study of Henselian fields of large residue characteristic with the application to Artin's conjecture work of Denef and others on integration; and work of Macintyre, Delon, Prestel, Roquette, Kuhlmann, and others on p-adic fields and positive characteristic. The model theory of valued fields is thus one of the most established and deepest areas of the subject.
However, precisely because of the complexity of valued fields, much of the work centers on quantifier elimination and basic properties of formulas. Few tools are available for a more structural model-theoretic analysis. This contrasts with the situation for the classical model complete theories, of algebraically closed and real closed fields, where stability theory and o-minimality make possible a study of the category of definable sets. Consider for instance the statement that fields interpretable over ℂ are finite or algebraically closed. Quantifier elimination by itself is of little use in proving this statement. One uses instead the notion of ω-stability; it is preserved under interpretation, implies a chain condition on definable subgroups, and, by a theorem of Macintyre, ω-stable fields are algebraically closed. With more analysis, using notions such as generic types, one can show that indeed every interpretable field is finite or definably isomorphic to ℂ itself.