We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Spectroscopic observations are essential for confirming associations, measuring kinematics, and determining stellar populations in dwarf galaxies. Here, we present Keck CosmicWeb Imager (KCWI) spectra for 12 MATLAS survey dwarfs. For 9, we confirm recession velocities consistent with their literature-assumed host galaxies. We propose revisions of the host galaxy associations for MATLAS-631, 1494, and 1938. For MATLAS-1494, our measured redshift reclassifies it from an ultra-diffuse galaxy candidate to a dwarf galaxy that is of smaller physical size and places it in the field. It also appears old and passive, providing a challenge to models that invoke quenching by tidal effects. Additionally, we measure stellar population estimates for 7 of the 12 galaxies, finding a ‘mixed bag’ of old quenched galaxies and those that are currently forming stars. Compared to the literature we find generally younger ages and higher metallicities. This result may help reconcile the observed offset of MATLAS survey dwarf galaxies from the universal stellar mass–metallicity relationship reported by Heesters et al. (2023).
The high redshift ‘little red dots’ (LRDs) detected with the James Webb Space Telescope are considered to be the cores of emerging galaxies that host active galactic nuclei (AGN). For the first time, we compare LRDs with local compact stellar systems and an array of galaxy-morphology-dependent stellar mass-black hole mass scaling relations in the $M_\mathrm{ bh}$–$M_{\star}$ diagrams. When considering the 2023–2024 masses for LRDs, they are not equivalent to nuclear star clusters (NSCs), with the latter having higher $M_\mathrm{ bh}/M_{\star}$ ratios. However, the least massive LRDs exhibit similar $M_\mathrm{ bh}$ and $M_\mathrm{ \star,gal}$ values as ultracompact dwarf (UCD) galaxies, believed to be the cores of stripped/threshed galaxies. We show that the LRDs span the $M_\mathrm{ bh}$–$M_\mathrm{ \star,gal}$ diagram from UCD galaxies to primaeval lenticular galaxies. In contrast, local spiral galaxies and the subset of major-merger-built early-type galaxies define $M_\mathrm{ bh}$–$M_{\star,gal}$ relations that are offset to higher stellar masses. Based on the emerging 2025 masses for LRDs, they may yet have similarities with NSCs, UCD galaxies, and green peas. Irrespective of this developing situation, we additionally observe that low-redshift galaxies with AGN align with the quasi-quadratic or steeper black hole scaling relations defined by local disc galaxies with directly measured black hole masses. This highlights the benefits of considering a galaxy’s morphology – which reflects its accretion and merger history – to understand the coevolution of galaxies and their black holes. Future studies of spatially resolved galaxies with secure masses at intermediate-to-high redshift hold the promise of detecting the emergence and evolution of the galaxy-morphology-dependent $M_\mathrm{ bh}$–$M_{\star}$ relations.
A number of nearby dwarf galaxies have globular cluster (GC) candidates that require spectroscopic confirmation. Here, we present Keck telescope spectra for 15 known GCs and GC candidates that may be associated with a host dwarf galaxy and an additional 3 GCs in the halo of M31 that are candidates for accretion from a now-disrupted dwarf galaxy. We confirm six star clusters (of intermediate-to-old age) to be associated with NGC 247. The vast bulk of its GC system remains to be studied spectroscopically. We also confirm the GC candidates in F8D1 and DDO190, finding both to be young star clusters. The three M31 halo GCs all have radial velocities consistent with M31 and are old and very metal-poor. Their ages and metallicities are consistent with accretion from a low-mass satellite galaxy. Finally, three objects are found to be background galaxies – two are projected near NGC 247 and one (candidate GCC7) is near the IKN dwarf. The IKN dwarf thus has only five confirmed GCs but still a remarkable specific frequency of 124.
The utilisation of massed therapy for treating posttraumatic stress disorder (PTSD) is gaining strength, especially prolonged exposure. However, it is unknown whether massed prolonged exposure (MPE) is non-inferior to standard prolonged exposure (SPE) protocols in the long term. The current study aimed to assess whether MPE was non-inferior to SPE at 12 months post-treatment, and to ascertain changes in secondary measure outcomes.
Methods
A multi-site non-inferiority randomised controlled trial (RCT) compared SPE with MPE in 12 clinics. The primary outcome was PTSD symptom severity (CAPS-5) at 12 months post-treatment commencement. Secondary outcome measures included symptoms of depression, anxiety, anger, disability, and quality of life at 12 weeks and 12 months post-treatment commencement. Outcome assessors were blinded to treatment allocation. The intention-to-treat sample included 138 Australian military members and veterans and data were analysed for 134 participants (SPE = 71, MPE = 63).
Results
Reductions in PTSD severity were maintained at 12 months and MPE remained non-inferior to SPE. Both treatment groups experienced a reduction in depression, anxiety, anger, and improvements in quality of life at 12 weeks and 12 months post-treatment commencement. Treatment effects for self-reported disability in the SPE group at 12 weeks were not maintained, with neither group registering significant effects at 12 months.
Conclusions
The emergence of massed protocols for PTSD is an important advancement. The current study provides RCT evidence for the longevity of MPE treatment gains at 12 months post-treatment commencement and demonstrated non-inferiority to SPE. Promisingly, both treatments also significantly reduced the severity of comorbid symptoms commonly occurring alongside PTSD.
Long-duration gamma-ray burst (GRB) afterglow observations offer cutting-edge opportunities to characterise the star formation history of the Universe back to the epoch of reionisation, and to measure the chemical composition of interstellar and intergalactic gas through absorption spectroscopy. The main barrier to progress is the low efficiency in rapidly and confidently identifying which bursts are high redshift ($z > 5$) candidates before they fade, as this requires low-latency follow-up observations at near-infrared wavelengths (or longer) to determine a reliable photometric redshift estimate. Since no current or planned gamma-ray observatories carry near-infrared telescopes on-board, complementary facilities are needed. So far this task has been performed by instruments on the ground, but sky visibility and weather constraints limit the number of GRB targets that can be observed and the speed at which follow-up is possible. In this work we develop a Monte Carlo simulation framework to investigate an alternative approach based on the use of a rapid-response near-infrared nano-satellite, capable of simultaneous imaging in four bands from $0.8$ to $1.7\,\unicode{x03BC}$m (a mission concept called SkyHopper). Using as reference a sample of 88 afterglows observed with the GROND instrument on the MPG/ESO telescope, we find that such a nano-satellite is capable of detecting in the H-band (1.6 $\unicode{x03BC}$m) $72.5\% \pm 3.1\%$ of GRBs concurrently observable with the Swift satellite via its UVOT instrument (and $44.1\% \pm 12.3\%$ of high redshift ($z>5$) GRBs) within 60 min of the GRB prompt emission. This corresponds to detecting ${\sim}55$ GRB afterglows per year, of which 1–3 have $z > 5$. These rates represent a substantial contribution to the field of high-z GRB science, as only 23 $z > 5$ GRBs have been collectively discovered by the entire astronomical community over the last ${\sim}24$ yr. Future discoveries are critically needed to take advantage of next generation follow-up spectroscopic facilities such as 30m-class ground telescopes and the James Webb Space Telescope. Furthermore, a systematic space-based follow-up of afterglows in the near-infrared will offer new insight on the population of dusty (‘dark’) GRBs which are primarily found at cosmic noon ($z\sim 1-3$). Additionally, we find that launching a mini-constellation of 3 near-infrared nano-satellites would increase the detection fraction of afterglows to ${\sim}83\%$ and substantially reduce the latency in the photometric redshift determination.
A short, effective therapy for posttraumatic stress disorder (PTSD) could decrease barriers to implementation and uptake, reduce dropout, and ameliorate distressing symptoms in military personnel and veterans. This non-inferiority RCT evaluated the efficacy of 2-week massed prolonged exposure (MPE) therapy compared to standard 10-week prolonged exposure (SPE), the current gold standard treatment, in reducing PTSD severity in both active serving and veterans in a real-world health service system.
Methods
This single-blinded multi-site non-inferiority RCT took place in 12 health clinics across Australia. The primary outcome was PTSD symptom severity measured by the Clinician-Administered PTSD Scale for DSM-5 (CAPS-5) at 12 weeks. 138 military personnel and veterans with PTSD were randomised. 71 participants were allocated to SPE, with 63 allocated to MPE.
Results
The intention-to-treat sample included 138 participants, data were analysed for 134 participants (88.1% male, M = 46 years). The difference between the mean MPE and SPE group PTSD scores from baseline to 12 weeks-post therapy was 0.94 [95% confidence interval (CI) −4.19 to +6.07]. The upper endpoint of the 95% CI was below +7, indicating MPE was non-inferior to SPE. Significant rates of loss of PTSD diagnosis were found for both groups (MPE 53.8%, SPE 54.1%). Dropout rates were 4.8% (MPE) and 16.9% (SPE).
Conclusions
MPE was non-inferior to SPE in significantly reducing symptoms of PTSD. Significant reductions in symptom severity, low dropout rates, and loss of diagnosis indicate MPE is a feasible, accessible, and effective treatment. Findings demonstrate novel methods to deliver gold-standard treatments for PTSD should be routinely considered.
Sleep and circadian timing shifts later during adolescence, conflicting with early school start times, and resulting in circadian misalignment. Although circadian misalignment has been linked to depression, substance use, and altered reward function, a paucity of experimental studies precludes the determination of causality. Here we tested, for the first time, whether experimentally-imposed circadian misalignment alters the neural response to monetary reward and/or response inhibition.
Methods
Healthy adolescents (n = 25, ages 13–17) completed two in-lab sleep schedules in counterbalanced order: An ‘aligned’ condition based on typical summer sleep-wake times (0000–0930) and a ‘misaligned’ condition mimicking earlier school year sleep-wake times (2000–0530). Participants completed morning and afternoon functional magnetic resonance imaging scans during each condition, including monetary reward (morning only) and response inhibition (morning and afternoon) tasks. Total sleep time and circadian phase were assessed via actigraphy and salivary melatonin, respectively.
Results
Bilateral ventral striatal (VS) activation during reward outcome was lower during the Misaligned condition after accounting for the prior night's total sleep time. Bilateral VS activation during reward anticipation was lower during the Misaligned condition, including after accounting for covariates, but did not survive correction for multiple comparisons. Right inferior frontal gyrus activation during response inhibition was lower during the Misaligned condition, before and after accounting for total sleep time and vigilant attention, but only during the morning scan.
Conclusions
Our findings provide novel experimental evidence that circadian misalignment analogous to that resulting from school schedules may have measurable impacts on healthy adolescents' reward processing and inhibition of prepotent responses.
When open-cut mines are eventually abandoned, they leave a large hole with sloping sides. The hole fills with rain water, and there is also contaminated run-off from surrounding land, that moves through the rock and eventually through the sloping sides of the abandoned mine. This paper considers a two-dimensional unsteady model motivated by this leaching flow through the rock and into the rain-water reservoir. The stability of the interface between the two fluids is analysed in the inviscid limit. A viscous Boussinesq model is also presented, and a closed-form solution is presented to this problem, after it has been linearized in a manner consistent with Boussinesq theory. That solution suggests that the interfacial zone is effectively neutrally stable as it evolves in time. However, an asymptotic theory in the interfacial region shows the interface to be unstable. In addition, the nonlinear Boussinesq model is solved using a spectral method. Interfacial travelling waves and roll-up are observed and discussed, and compared against the predictions of asymptotic Boussinesq theory.
The use of roman numerals for stellar populations represents a classification approach to galaxy formation which is now well behind us. Nevertheless, the concept of a pristine generation of stars, followed by a protogalactic era, and finally the mainstream stellar population is a plausible starting point for testing our physical understanding of early star formation. This will be observationally driven as never before in the coming decade. In this paper, we search out observational tests of an idealised coeval and homogeneous distribution of population II stars. We examine the spatial distribution of quasars, globular clusters, and the integrated free electron density of the intergalactic medium, in order to test the assumption of homogeneity. Any real inhomogeneity implies a population II that is not coeval.
Integral field unit spectrographs allow the 2D exploration of the kinematics and stellar populations of galaxies, although they are generally restricted to small fields-of-view. Using the large field-of-view of the DEIMOS multislit spectrograph on Keck and our Stellar Kinematics using Multiple Slits technique, we are able to extract sky-subtracted stellar light spectra to large galactocentric radii. Here, we present a new DEIMOS mask design named SuperSKiMS that explores large spatial scales without sacrificing high spatial sampling. We simulate a set of observations with such a mask design on the nearby galaxy NGC 1023, measuring stellar kinematics and metallicities out to where the galaxy surface brightness is orders of magnitude fainter than the sky. With this technique we also reproduce the results from literature integral field spectroscopy in the innermost galaxy regions. In particular, we use the simulated NGC 1023 kinematics to model its total mass distribution to large radii, obtaining comparable results with those from published integral field unit observation. Finally, from new spectra of NGC 1023, we obtain stellar 2D kinematics and metallicity distributions that show good agreement with integral field spectroscopy results in the overlapping regions. In particular, we do not find a significant offset between our Stellar Kinematics using Multiple Slits and the ATLAS3D stellar velocity dispersion at the same spatial locations.
We present the proceedings from a two-day workshop held at Swinburne University on 2005 May 24–25. The workshop participants highlighted current Australian research on both theoretical and observational aspects of galaxy groups. These proceedings include short one-page summaries of a number of the talks presented at the workshop. The talks presented ranged from reconciling N-body simulations with observations, to the Hı content of galaxies in groups and the existence of ‘dark galaxies’. The formation and existence of ultra-compact dwarfs in groups, and a new supergroup in Eridanus were also discussed.
Galaxy groups have been under-studied relative to their richer counterparts — clusters. The Group Evolution Multiwavelength Study (GEMS) aims to redress some of the balance. Here we describe the GEMS sample selection and resulting sample of 60 nearby (< 130 Mpc) galaxy groups and our multiwavelength dataset of X-ray, optical, and Hı imaging. ROSAT X-ray images of each group are presented. GEMS also utilizes near-infrared imaging from the 2MASS survey and optical spectra from the 6dFGS. These observational data are complemented by mock group catalogues generated from the latest ΓCDM simulations with gas physics included. Existing GEMS publications are briefly highlighted as are future publication plans.
Although originally classified as galaxies, Ultra-Compact Dwarfs (UCDs) have many properties in common with globular star clusters. The debate on the origin and nature of UCDs, and the recently discovered ultra-faint dwarf spheroidal (dSph) galaxies which contain very few stars, has motivated us to as the question ‘What is a galaxy?’ Our aim here is to promote further discussion of how to define a galaxy and, in particular, what separates it from a star cluster. Like most previous definitions, we adopt the requirement of gravitationally bound stellar system as a minimum. In order to distinguish a dwarf galaxy from a globular cluster, we discuss other possible requirements, such as a minimum size, a long two-body relaxation time a satellite system, the presence of complex stellar populations and non-baryonic dark matter. We briefly mention the implications of the adoption of each of these definitions. Some special cases of objects with a ambiguous nature are also discussed. Finally, we give our favoured criteria, and in the spirit of ‘collective wisdom’, invite readers to vote on their prefered definition of a galaxy via a dedicated website.
An English translation of Hegel's introduction to his lectures on the philosophy of history, based directly on the standard German edition by Johannes Hoffmeister, first published in 1955. The previous English translation, by J. Sibree, first appeared in 1857 and was based on the defective German edition of Karl Hegel, to which Hoffmeister's edition added a large amount of new material previously unknown to English readers, derived from earlier editors. In the introduction to his lectures, Hegel lays down the principles and aims which underlie his philosophy of history, and provides an outline of the philosophy of history itself. The comprehensive and voluminous survey of world history which followed the introduction in the original lectures is of less interest to students of Hegel's thought than the introduction, and is therefore not included in this volume.
This essay, which won the Prince Consort Prize for 1950, treats of the revolutionary change in historical writing that followed the entry into England, early in the nineteenth century, of the ideas of Vico and of the German historical school. Chiefly through Coleridge's influence, eighteenth-century rationalist suppositions gave place in certain men to a fundamentally opposed, 'Romantic' philosophy, and so to a new kind of History. Mr. Forbes is particularly concerned with the part played in this revolution by the liberal Anglicans: Thomas Arnold, Headmaster of Rugby and Regius Professsor of Modern History at Oxford; Richard Whitely, Professor of Political Economy at Oxford and Archbishop of Dublin; Julius Charles Hare, disciple of Coleridge and translator (with Thirlwall) of Niebuhr's History of Rome; Connop Thirlwall, Bishop of St David's and author of the History of Greece; Henry Hart Milman, Professor of Poetry and Oxford and Dean of St Paul's; Arthur Penrhyn Stanley, pupil and biographer of Thomas Arnold, and Dean of Westminster. They have elsewhere been studied in the compartments of 'classical' and 'ecclesiastical' history. But it is fundamental to their outlook on Church and State that for them no such compartments existed, and their idea of History as a whole has hitherto lacked an English historian. This essay does much more than clarify technical problems in one of the various ideas of History embraced in Professor Toynbee's system. Mr. Forbes addresses his book to all students of nineteenth-century thought.
We detail an innovative new technique for measuring the 2-D velocity moments (rotation velocity, velocity dispersion and Gauss-Hermite coefficients h3 and h4) using spectra from Keck DEIMOS multi-object spectroscopic observations. The data are used to reconstruct 2-D rotation velocity maps.
A comparison is carried out among the star formation histories of early-type galaxies in fossil groups, clusters and low density environments. Although they show similar evolutionary histories, a significant fraction of the fossils are younger than their counterparts, suggesting that they can be precursors of the isolated ETG galaxies.
An outbreak of food poisoning which occurred at Brighton in November, 1917, showed several features of unusual interest which makes its publication of value. While the epidemiological inquires and pathological investigations were carried out separately a coherent narrative is best obtained by combined presentation. The pathological investigations were carried out for, and at the request of, the Local Government Board.
The outbreak occurred in the Royal Sussex County Hospital which at the time contained 369 residents, 227 being patients and 142 staff. Twenty-eight persons suffered from food poisoning, 24 of whom were patients and 4 members of the staff. Two deaths occurred but both were patients already suffering from severe diseases.
Globular Clusters provide a unique method for tracing the formation and evolution of their host galaxies. As single stellar populations they are far easier to interpret than the multi-population complexity of galaxy field stars. The scaling properties of globular clusters provide important constraints on the hierarchical assembly history of galaxies. Here we briefly review recent progress using the Hubble Space Telescope for imaging and the Keck plus Gemini telescopes for spectroscopy. We argue that the red, or metal-rich, subpopulation of GCs is associated with the bulge/spheroid component of galaxies. As one of the oldest stellar systems available for study, we discuss how globular clusters can be used to constrain the formation of galaxy bulges, in particular the role of mergers vs secular evolution. We conclude that metal-rich GCs, and hence bulges, formed very early in the Universe with more recent mergers having a small effect at most.
Waves on a neutrally buoyant intrusion layer moving into otherwise stationary fluid are studied. There are two interfacial free surfaces, above and below the moving layer, and a train of waves is present. A small amplitude linearized theory shows that there are two different flow types, in which the two interfaces are either in phase or else move oppositely. The former flow type occurs at high phase speed and the latter is a low-speed solution. Nonlinear solutions are computed for large amplitude waves, using a spectral type numerical method. They extend the results of the linearized analysis, and reveal the presence of limiting flow types in some circumstances.