We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The experimental data for the mean velocity are analysed in the inner layer for a turbulent boundary layer at significant adverse pressure gradient and Reynolds numbers up to $\textit {Re}_\theta =57\,000$. The aim is to determine the resilience of the log law for the mean velocity, the possible change of the von Kármán constant $\kappa$ and the appearance of a square-root law above the log law at significant adverse pressure gradients. In the wind-tunnel experiment, the adverse pressure gradient is imposed by an $S$-shaped deflection of the contour model which is mounted on a wind-tunnel sidewall. A large-scale particle imaging velocimetry method is applied to measure the streamwise evolution of the flow over a streamwise distance of 15 boundary layer thicknesses. In the adverse pressure gradient region, microscopic and three-dimensional Lagrangian particle tracking velocimetry are used to measure the mean velocity and the Reynolds stresses down to the viscous sublayer. Oil-film interferometry is used to determine the wall shear stress. The log law in the mean-velocity profile is found to be a robust feature at adverse pressure gradient, but its region is thinner than its zero pressure gradient counterpart, and its slope is altered. A square-root law emerges above the log law, extending to the wall distance the log law typically occupies at zero pressure gradient. Lower values for $\kappa$ are found than for zero pressure gradient turbulent boundary layers, but the reduction is within the uncertainty of the measurement.
Flow interaction of three different jet configurations ejecting air from a flat plate into a supersonic cross flow were investigated experimentally and numerically. The test conditions encompassed a jet pressure ratio of Poj, P∞ = 100 at a Mach number of M∞ = 5 and Reynolds number of about Re∞ = 25 × 106 based on the length of the flat plate. The investigated test cases are: a) single jet; b) four jets positioned in-line in main flow direction; c) four jets positioned side-by-side in spanwise direction. The prediction of the overall flow phenomena as occurring within the interaction area was in fair agreement with the experiments, although quantitatively differences occur that will be discussed in the paper.
The results of the comparison are presented and the experimental data are used to validate the applied code.
Strong interactions of shock waves with boundary layers lead to flow separations and enhanced heat transfer rates. When the approaching boundary layer is hypersonic and transitional the problem is particularly challenging and more reliable data is required in order to assess changes in the flow and the surface heat transfer, and to develop simplified models. The present contribution compares results for transitional interactions on a flat plate at Mach 6 from three different experimental facilities using the same instrumented plate insert. The facilities consist of a Ludwieg tube (RWG), an open-jet wind tunnel (H2K) and a high-enthalpy free-piston-driven reflected shock tunnel (HEG). The experimental measurements include shadowgraph and infrared thermography as well as heat transfer and pressure sensors. Direct numerical simulations (DNS) are carried out to compare with selected experimental flow conditions. The combined approach allows an assessment of the effects of unit Reynolds number, disturbance amplitude, shock impingement location and wall cooling. Measures of intermittency are proposed based on wall heat flux, allowing the peak Stanton number in the reattachment regime to be mapped over a range of intermittency states of the approaching boundary layer, with higher overshoots found for transitional interactions compared with fully turbulent interactions. The transition process is found to develop from second (Mack) mode instabilities superimposed on streamwise streaks.
Cellulases are increasingly being used for industrial purposes, particularly in washing powders, yet little is known of the factors governing the stability of proteins in detergent solutions. We present a comparative analysis of the behavior of the cellulase Cel45 from Humicola insolens in the presence of the denaturant guanidinium chloride and the anionic detergent C12-LAS. Although Cel45 unfolds in GdmCl according to a simple two-state model under equilibrium conditions, it accumulates a transient intermediate during refolding. The four disulfide bonds do not contribute detectably to the stability of the native state. Cel45 is unfolded by very low concentrations of C12-LAS (1–4 mM). An analysis of 16 mutants of Cel45 shows a very weak correlation between unfolding rates in denaturant and detergent; mutants that have the same unfolding rate in GdmCl (within a factor of 1.5) vary 1,000-fold in their unfolding rates in C12-LAS. The data support a simple model for unfolding by detergent, in which the introduction of positive charges or removal of negative charges greatly increases detergent sensitivity, while interactions with the hydrophobic detergent tail contribute to a smaller extent. This implies that different detergent-mediated unfolding pathways exist, whose accessibilities depend on individual residues. Double-mutant cycles reveal that mutations in two proximal residues lead to repulsion and a destabilization greater than the sum of the individual mutations as measured by GdmCl denaturation, but they also reduce the affinity for LAS and therefore actually stabilize the protein relative to wild-type. Ligands that interact strongly with the denatured state may therefore alter the unfolding process.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.