We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The First Large Absorption Survey in H i (FLASH) is a large-area radio survey for neutral hydrogen in and around galaxies in the intermediate redshift range $0.4\lt z\lt1.0$, using the 21-cm H i absorption line as a probe of cold neutral gas. The survey uses the ASKAP radio telescope and will cover 24,000 deg$^2$ of sky over the next five years. FLASH breaks new ground in two ways – it is the first large H i absorption survey to be carried out without any optical preselection of targets, and we use an automated Bayesian line-finding tool to search through large datasets and assign a statistical significance to potential line detections. Two Pilot Surveys, covering around 3000 deg$^2$ of sky, were carried out in 2019-22 to test and verify the strategy for the full FLASH survey. The processed data products from these Pilot Surveys (spectral-line cubes, continuum images, and catalogues) are public and available online. In this paper, we describe the FLASH spectral-line and continuum data products and discuss the quality of the H i spectra and the completeness of our automated line search. Finally, we present a set of 30 new H i absorption lines that were robustly detected in the Pilot Surveys, almost doubling the number of known H i absorption systems at $0.4\lt z\lt1$. The detected lines span a wide range in H i optical depth, including three lines with a peak optical depth $\tau\gt1$, and appear to be a mixture of intervening and associated systems. Interestingly, around two-thirds of the lines found in this untargeted sample are detected against sources with a peaked-spectrum radio continuum, which are only a minor (5–20%) fraction of the overall radio-source population. The detection rate for H i absorption lines in the Pilot Surveys (0.3 to 0.5 lines per 40 deg$^2$ ASKAP field) is a factor of two below the expected value. One possible reason for this is the presence of a range of spectral-line artefacts in the Pilot Survey data that have now been mitigated and are not expected to recur in the full FLASH survey. A future paper in this series will discuss the host galaxies of the H i absorption systems identified here.
In response to the COVID-19 pandemic, we rapidly implemented a plasma coordination center, within two months, to support transfusion for two outpatient randomized controlled trials. The center design was based on an investigational drug services model and a Food and Drug Administration-compliant database to manage blood product inventory and trial safety.
Methods:
A core investigational team adapted a cloud-based platform to randomize patient assignments and track inventory distribution of control plasma and high-titer COVID-19 convalescent plasma of different blood groups from 29 donor collection centers directly to blood banks serving 26 transfusion sites.
Results:
We performed 1,351 transfusions in 16 months. The transparency of the digital inventory at each site was critical to facilitate qualification, randomization, and overnight shipments of blood group-compatible plasma for transfusions into trial participants. While inventory challenges were heightened with COVID-19 convalescent plasma, the cloud-based system, and the flexible approach of the plasma coordination center staff across the blood bank network enabled decentralized procurement and distribution of investigational products to maintain inventory thresholds and overcome local supply chain restraints at the sites.
Conclusion:
The rapid creation of a plasma coordination center for outpatient transfusions is infrequent in the academic setting. Distributing more than 3,100 plasma units to blood banks charged with managing investigational inventory across the U.S. in a decentralized manner posed operational and regulatory challenges while providing opportunities for the plasma coordination center to contribute to research of global importance. This program can serve as a template in subsequent public health emergencies.
In this paper, we describe the system design and capabilities of the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope at the conclusion of its construction project and commencement of science operations. ASKAP is one of the first radio telescopes to deploy phased array feed (PAF) technology on a large scale, giving it an instantaneous field of view that covers $31\,\textrm{deg}^{2}$ at $800\,\textrm{MHz}$. As a two-dimensional array of 36$\times$12 m antennas, with baselines ranging from 22 m to 6 km, ASKAP also has excellent snapshot imaging capability and 10 arcsec resolution. This, combined with 288 MHz of instantaneous bandwidth and a unique third axis of rotation on each antenna, gives ASKAP the capability to create high dynamic range images of large sky areas very quickly. It is an excellent telescope for surveys between 700 and $1800\,\textrm{MHz}$ and is expected to facilitate great advances in our understanding of galaxy formation, cosmology, and radio transients while opening new parameter space for discovery of the unknown.
The Rapid ASKAP Continuum Survey (RACS) is the first large-area survey to be conducted with the full 36-antenna Australian Square Kilometre Array Pathfinder (ASKAP) telescope. RACS will provide a shallow model of the ASKAP sky that will aid the calibration of future deep ASKAP surveys. RACS will cover the whole sky visible from the ASKAP site in Western Australia and will cover the full ASKAP band of 700–1800 MHz. The RACS images are generally deeper than the existing NRAO VLA Sky Survey and Sydney University Molonglo Sky Survey radio surveys and have better spatial resolution. All RACS survey products will be public, including radio images (with $\sim$ 15 arcsec resolution) and catalogues of about three million source components with spectral index and polarisation information. In this paper, we present a description of the RACS survey and the first data release of 903 images covering the sky south of declination $+41^\circ$ made over a 288-MHz band centred at 887.5 MHz.
To estimate and compare the impact on healthcare costs of 3 alternative strategies for reducing bloodstream infections in the intensive care unit (ICU): methicillin-resistant Staphylococcus aureus (MRSA) nares screening and isolation, targeted decolonization (ie, screening, isolation, and decolonization of MRSA carriers or infections), and universal decolonization (ie, no screening and decolonization of all ICU patients).
Design.
Cost analysis using decision modeling.
Methods.
We developed a decision-analysis model to estimate the health care costs of targeted decolonization and universal decolonization strategies compared with a strategy of MRSA nares screening and isolation. Effectiveness estimates were derived from a recent randomized trial of the 3 strategies, and cost estimates were derived from the literature.
Results.
In the base case, universal decolonization was the dominant strategy and was estimated to have both lower intervention costs and lower total ICU costs than either screening and isolation or targeted decolonization. Compared with screening and isolation, universal decolonization was estimated to save $171,000 and prevent 9 additional bloodstream infections for every 1,000 ICU admissions. The dominance of universal decolonization persisted under a wide range of cost and effectiveness assumptions.
Conclusions.
A strategy of universal decolonization for patients admitted to the ICU would both reduce bloodstream infections and likely reduce healthcare costs compared with strategies of MRSA nares screening and isolation or screening and isolation coupled with targeted decolonization.
There is increasing demand for the implementation of effects-based monitoring and surveillance (EBMS) approaches in the Great Lakes Basin to complement traditional chemical monitoring. Herein, we describe an ongoing multiagency effort to develop and implement EBMS tools, particularly with regard to monitoring potentially toxic chemicals and assessing Areas of Concern (AOCs), as envisioned by the Great Lakes Restoration Initiative (GLRI). Our strategy includes use of both targeted and open-ended/discovery techniques, as appropriate to the amount of information available, to guide a priori end point and/or assay selection. Specifically, a combination of in vivo and in vitro tools is employed by using both wild and caged fish (in vivo), and a variety of receptor- and cell-based assays (in vitro). We employ a work flow that progressively emphasizes in vitro tools for long-term or high-intensity monitoring because of their greater practicality (e.g., lower cost, labor) and relying on in vivo assays for initial surveillance and verification. Our strategy takes advantage of the strengths of a diversity of tools, balancing the depth, breadth, and specificity of information they provide against their costs, transferability, and practicality. Finally, a series of illustrative scenarios is examined that align EBMS options with management goals to illustrate the adaptability and scaling of EBMS approaches and how they can be used in management decisions.
The scholarly study of fifteenth-century English verse is very much a late twentieth-century phenomenon. A number of the writings associated with the fifteenth-century authors covered in this collection of essays were not accessible in usable editions until some point in the twentieth century, and the critical tendency to overlook fifteenth-century poetry was in part an inevitable result of its simple unavailability. But the early decades of the twentieth century saw significant changes in the landscape of fifteenth-century verse, attributable largely to the efforts of dedicated individuals working in isolation. Henry Bergen, most significantly, produced in the first two decades of the twentieth century notable editions of the two longest poetic works of the fifteenth century, John Lydgate's Troy Book and Fall of Princes, each over 30,000 lines (Bergen 1906–35 and 1924-27). The work of Eleanor Hammond on fifteenth-century manuscript and textual culture in England generated partial editions and an important survey of fifteenth-century poetry in the form of English Verse between Chaucer and Surrey (1927). And Walter Schirmer's study of John Lydgate, published originally in German in 1952 and translated into English in 1961, offered a Kulturbild, a historical and cultural analysis of the most prolific poet of the century that has still not been superseded. These figures stand apart from a general tendency to see the verse of the period between Chaucer and the early sixteenth century as largely unrewarding.
In the fervent, contentious, and sometimes ostentatious religious culture of fifteenth-century England, one writer stands out as a particularly prolific and versatile author of devotional texts: the monk of Bury St Edmunds, John Lydgate (c.1370–1449). Lydgate wrote thousands of lines of religious poetry for a wide range of patrons, both individual and institutional, and his poetry provides a comprehensive picture of orthodox fifteenth-century English religious life and its concerns: highly sacramental, habitually influenced by meditative spirituality and imitatio Christi, defiantly anti-Lollard, and profoundly invested in the cults of the saints and of the Virgin. Perhaps more surprisingly, however, Lydgate's religious poetry is, like his more overtly political poems, often highly topical. Lydgate was long viewed as a repetitive monk, cloistered in self-indulgent rhetoric (Mortimer 2005: 2–20, summarises the relevant unflattering assessments and Lydgate's changing critical fortunes). Now, Lydgate is increasingly seen as a poet who innovated and experimented: he negotiated the vernacular translation of religious material, the incorporation of Chaucerian diction and themes, and the use of aureate language and humanist ideas all within the parameters of orthodoxy. Lydgate's poetry also inaugurates several new European traditions into English devotional culture: subjects such as the Dance of Death and visual-material forms such as mural poetry and the pietà or image of pity find early English expressions in Lydgate's poetry. In short, Lydgate provides us with a ready conspectus of religious literary forms, from short prayers to epic narratives, poised between cloistered monasticism and a vigorous patronage culture of ‘pray and display’.