We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We describe the modulo $2$ de Rham-Witt complex of a field of characteristic $2$, in terms of the powers of the augmentation ideal of the $\mathbb {Z}/2$-geometric fixed points of real topological restriction homology ${\mathrm {TRR}}$. This is analogous to the conjecture of Milnor, proved in [Kat82] for fields of characteristic $2$, which describes the modulo $2$ Milnor K-theory in terms of the powers of the augmentation ideal of the Witt group of symmetric forms. Our proof provides a somewhat explicit description of these objects, as well as a calculation of the homotopy groups of the geometric fixed points of ${\mathrm {TRR}}$ and of real topological cyclic homology, for all fields.
For a not-necessarily commutative ring $R$ we define an abelian group $W(R;M)$ of Witt vectors with coefficients in an $R$-bimodule $M$. These groups generalize the usual big Witt vectors of commutative rings and we prove that they have analogous formal properties and structure. One main result is that $W(R) := W(R;R)$ is Morita invariant in $R$. For an $R$-linear endomorphism $f$ of a finitely generated projective $R$-module we define a characteristic element $\chi _f \in W(R)$. This element is a non-commutative analogue of the classical characteristic polynomial and we show that it has similar properties. The assignment $f \mapsto \chi _f$ induces an isomorphism between a suitable completion of cyclic $K$-theory $K_0^{\mathrm {cyc}}(R)$ and $W(R)$.
We define a theory of Goodwillie calculus for enriched functors from finite pointed simplicial $G$-sets to symmetric $G$-spectra, where $G$ is a finite group. We extend a notion of $G$-linearity suggested by Blumberg to define stably excisive and ${\it\rho}$-analytic homotopy functors, as well as a $G$-differential, in this equivariant context. A main result of the paper is that analytic functors with trivial derivatives send highly connected $G$-maps to $G$-equivalences. It is analogous to the classical result of Goodwillie that ‘functors with zero derivative are locally constant’. As the main example, we show that Hesselholt and Madsen’s Real algebraic $K$-theory of a split square zero extension of Wall antistructures defines an analytic functor in the $\mathbb{Z}/2$-equivariant setting. We further show that the equivariant derivative of this Real $K$-theory functor is $\mathbb{Z}/2$-equivalent to Real MacLane homology.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.