We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Hoarding disorder (HD) is primarily characterised by difficulties with discarding possessions. Evidence-based psychological interventions such as CBT have been found to be of benefit to people with HD. However, people with HD may receive a psychosocial intervention provided by other professions such as social workers or a multi-disciplinary team before receiving psychological therapy, if at all.
Objectives:
The aim of this systematic review is to evaluate psychosocial interventions for HD.
Method:
Searches were conducted on three databases (PsycInfo; MEDLINE; Embase) and grey literature, and the search strategy was designed to capture psychosocial interventions for adults with HD.
Results:
Studies (n=5) were included where the outcome was related to a psychosocial factors, such as fire safety, tenancy preservation and QoL. These psychosocial interventions show improvements in those with HD, with effect sizes ranging from d=0.86 to d=1.41.
Conclusions:
Despite the limited research on psychosocial interventions for HD, this systematic review suggests it is a promising area for further research in this area.
Key learning aims
(1) To identify what psychosocial interventions are available for people experiencing hoarding difficulties.
(2) To identify how available psychosocial interventions for hoarding difficulties are delivered and by whom.
(3) To examine the effectiveness of psychosocial interventions for people experiencing hoarding difficulties.
The brain is reliant on mitochondria to carry out a host of vital cellular functions (e.g., energy metabolism, respiration, apoptosis) to maintain neuronal integrity. Clinically relevant, dysfunctional mitochondria have been implicated as central to the pathogenesis of Alzheimer’s disease (AD). Phosphorous magnetic resonance spectroscopy (31p MRS) is a non-invasive and powerful method for examining in vivo mitochondrial function via high energy phosphates and phospholipid metabolism ratios. At least one prior 31p MRS study found temporal-frontal differences for high energy phosphates in persons with mild AD. The goal of the current study was to examine regional (i.e., frontal, temporal) 31p MRS ratios of mitochondrial function in a sample of older adults at-risk for AD. Given the high energy consumption in temporal lobes (i.e., hippocampus) and preferential age-related changes in frontal structure-function, we predicted 31p MRS ratios of mitochondrial function would be greater in temporal as compared to frontal regions.
Participants and Methods:
The current study leveraged baseline neuroimaging data from an ongoing multisite study at the University of Florida and University of Arizona. Participants were older adults with memory complaints and a first-degree family history of AD [N = 70; mean [M] age [years] = 70.9, standard deviation [SD] =5.1; M education [years] = 16.2, SD = 2.2; M MoCA = 26.5, SD = 2.4; 61.4% female; 91.5% non-latinx white]. To achieve optimal sensitivity, we used a single voxel method to examine 31p MRS ratios (bilateral prefrontal and left temporal). Mitochondrial function was estimated by computing 5 ratios for each voxel: summed adenosine triphosphate to total pooled phosphorous (ATP/TP; momentary energy), ATP to inorganic phosphate (ATP/Pi; energy consumption), phosphocreatine to ATP (PCr/ATP; energy reserve), phosphocreatine to inorganic phosphate (PCr/Pi; oxidative phosphorylation), and phosphomonoesters to phosphodiesters (PME/PDE; cellular membrane turnover rate). All ratios were corrected for voxel size and cerebrospinal fluid fraction. Separate repeated measures analyses of variance controlling for scanner site differences (RM ANCOVAs) were performed.
Results:
31p MRS ratios were unrelated to demographic characteristics and were not included as additional covariates in analyses. Results of separate RM ANCOVAs revealed all 31p MRS ratios of mitochondrial function were greater in left temporal relative to bilateral prefrontal voxel: ATP/TP (p < .001), ATP/Pi (p = .001), PCr/ATP (p = .004), PCr/Pi (p = .004), and PME/PDE (p = .017). Effect sizes (partial eta squared) ranged from 0.6-.20.
Conclusions:
Consistent and extending one prior study, all 31p MRS ratios of mitochondrial function were greater in temporal as compared to frontal regions in older adults at-risk for AD. This may in part be related to the intrinsically high metabolic rate of the temporal region and preferential age-related changes in frontal structure-function. Alternatively, findings may reflect the influence of unaccounted factors (e.g., hemodynamics, auditory stimulation). Longitudinal study designs may inform whether patterns of mitochondrial function across different brain regions are present early in development, occur across the lifespan, or some combination. In turn, this may inform future studies examining differences in mitochondrial function (as measured using 31p MRS) in AD.
The COVID-19 pandemic dramatically altered social determinants of health including work, education, social connections, movement, and perceived control; and loneliness was commonly experienced. This longitudinal study examined how social determinants at the personal (micro), community (meso), and societal (macro) levels predicted loneliness during the pandemic.
Methods
Participants were 2056 Australian adults surveyed up to three times over 18 months in 2020 and 2021. Multi-level mixed-effect regressions were conducted predicting loneliness from social determinants at baseline and two follow-ups.
Results
Loneliness was associated with numerous micro determinants: male gender, lifetime diagnosis of a mental health disorder, experience of recent stressful event(s), low income, living alone or couples with children, living in housing with low natural light, noise, and major building defects. Lower resilience and perceived control over health and life were also associated with greater loneliness. At the meso level, reduced engagement with social groups, living in inner regional areas, and living in neighbourhoods with low levels of belongingness and collective resilience was associated with increased loneliness. At the macro level, increased loneliness was associated with State/Territory of residence.
Conclusions
Therapeutic initiatives must go beyond psychological intervention, and must recognise the social determinants of loneliness at the meso and macro levels.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.