We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
Selenium (Se) is an essential element for human health. However, our knowledge of the prevalence of Se deficiency is less than for other micronutrients of public health concern such as iodine, iron and zinc, especially in sub-Saharan Africa (SSA). Studies of food systems in SSA, in particular in Malawi, have revealed that human Se deficiency risks are widespread and influenced strongly by geography. Direct evidence of Se deficiency risks includes nationally representative data of Se concentrations in blood plasma and urine as population biomarkers of Se status. Long-range geospatial variation in Se deficiency risks has been linked to soil characteristics and their effects on the Se concentration of food crops. Selenium deficiency risks are also linked to socio-economic status including access to animal source foods. This review highlights the need for geospatially-resolved data on the movement of Se and other micronutrients in food systems which span agriculture–nutrition–health disciplinary domains (defined as a GeoNutrition approach). Given that similar drivers of deficiency risks for Se, and other micronutrients, are likely to occur in other countries in SSA and elsewhere, micronutrient surveillance programmes should be designed accordingly.
We describe the development of the HIV epidemic in Karonga District, Malawi over 22 years using data from population surveys and community samples. These data are used to estimate the trend in HIV prevalence, incidence and need for antiretroviral treatment (ART) using a simple mathematical model. HIV prevalence rose quickly in the late 1980s and early 1990s, stabilizing at around 12% in the mid-1990s. Estimated annual HIV incidence rose quickly, peaking in the early 1990s at 2·2% among males and 3·1% among females, and then levelled off at 1·3% among males and 1·1% among females by the late 1990s. Assuming a 2-year eligibility period, both our model and the UNAIDS models predicted 2·1% of adults were in need of ART in 2005. This prediction was sensitive to the assumed eligibility period, ranging from 1·6% to 2·6% if the eligibility period was instead assumed to be 1·5 or 2·5 years, respectively.
Email your librarian or administrator to recommend adding this to your organisation's collection.