We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Desorption processes of low-molecular-weight compounds from the surface of smectites into the gas phase determine a number of processes, e.g. those involved in drug delivery and the release of herbicides. The desorption has not been investigated thoroughly and is not well understood. The present study was undertaken in order to understand better the factors influencing these desorption mechanisms. Starting with a very pure standard (Na+-rich) montmorillonite (Kunipia-F), which was exchanged against cations with different hydration properties (Ca2+, Li+, phenyltrimethylammonium, hexyltrimethyl-ammonium), the experiments explored the rate of desorption of volatiles with different chemical functionalities (water, ethanol, ethyl acetate, and toluene). The desorption was monitored by thermogravimetry and differential scanning calorimetry under isothermal conditions, and by ramping the temperature at a constant rate. The experiments were compared with numerical calculations based on finite-element methods and with analytical models. These data point to a two-step mechanism where the desorption follows the curve of the equilibrium desorption isotherms of those molecules on the montmorillonite. The bulk-like volatiles (i.e. volatiles with release kinetics close to that of the bulk liquids) were desorbed in a first step. With a decrease in the degree of coverage of the volatile on the montmorillonite, the desorption was increasingly dominated by the strength of interaction between the volatile and the interlayer cations of the montmorillonite.
Obesity is highly prevalent and disabling, especially in individuals with severe mental illness including bipolar disorders (BD). The brain is a target organ for both obesity and BD. Yet, we do not understand how cortical brain alterations in BD and obesity interact.
Methods:
We obtained body mass index (BMI) and MRI-derived regional cortical thickness, surface area from 1231 BD and 1601 control individuals from 13 countries within the ENIGMA-BD Working Group. We jointly modeled the statistical effects of BD and BMI on brain structure using mixed effects and tested for interaction and mediation. We also investigated the impact of medications on the BMI-related associations.
Results:
BMI and BD additively impacted the structure of many of the same brain regions. Both BMI and BD were negatively associated with cortical thickness, but not surface area. In most regions the number of jointly used psychiatric medication classes remained associated with lower cortical thickness when controlling for BMI. In a single region, fusiform gyrus, about a third of the negative association between number of jointly used psychiatric medications and cortical thickness was mediated by association between the number of medications and higher BMI.
Conclusions:
We confirmed consistent associations between higher BMI and lower cortical thickness, but not surface area, across the cerebral mantle, in regions which were also associated with BD. Higher BMI in people with BD indicated more pronounced brain alterations. BMI is important for understanding the neuroanatomical changes in BD and the effects of psychiatric medications on the brain.
Infectious diseases, such as Helicobacter pylori, which produce systemic inflammation may be one key factor in the onset of autoimmunity. The association between H. pylori and antinuclear antibodies (ANA), a marker of autoimmunity, has been understudied. Data from the 1999–2000 National Health and Nutrition Examination Survey were used to evaluate the cross-sectional association between H. pylori seroprevalence and ANA positivity in US adults aged ≥20 years. ANA was measured in a 1:80 dilution of sera by indirect immunofluorescence using HEp-2 cells (positive ⩾3). H. pylori immunoglobulin G enzyme-linked immunosorbent assays were used to categorise individuals as seropositive or seronegative. H. pylori seropositivity and ANA positivity were common in the adult US population, with estimated prevalences of 33.3% and 9.9%, respectively. Both were associated with increasing age. H. pylori seropositivity was associated with higher odds of ANA (prevalence odds ratio = 1.89, 95% confidence interval = 1.08–3.33), adjusted for age, sex, race/ethnicity, educational attainment and body mass index. H. pylori infection may be one key factor in the loss of self-tolerance, contributing to immune dysfunction.
Precipitation of amorphous silica (SiO2) in geothermal power plants, although a common factor limiting the efficiency of geothermal energy production, is poorly understood and no universally applicable mitigation strategy to prevent or reduce precipitation is available. This is primarily due to the lack of understanding of the precipitation mechanism of amorphous silica in geothermal systems.
In the present study data are presented about microstructures and compositions of precipitates formed on scaling plates inserted at five different locations in the pipelines at the Hellisheiði power station (SW-Iceland). Precipitates on these plates formed over 6 to 8 weeks of immersion in hot (120 or 60ºC), fast-flowing and silica-supersaturated geothermal fluids (~800 ppm of SiO2). Although the composition of the precipitates is fairly homogeneous, with silica being the dominant component and Fe sulfides as a less common phase, the microstructures of the precipitates are highly variable and dependent on the location within the geothermal pipelines. The silica precipitates have grown through aggregation and precipitation of silica particles that precipitated homogeneously in the geothermal fluid. Five main factors were identified that may control the precipitation of silica: (1) temperature, (2) fluid composition, (3) fluid-flow regime, (4) distance along the flow path, and (5) immersion time.
On all scaling plates, a corrosion layer was found underlying the silica precipitates indicating that, once formed, the presence of a silica layer probably protects the steel pipe surface against further corrosion. Yet silica precipitates influence the flow of the geothermal fluids and therefore can limit the efficiency of geothermal power stations.
We study the feeding and feedback of the nucleus of M51 by considering gravitational torques, responsible for gas inflow, in relation to the local distribution of dense gas.
Precision optical astrometry of quasars and active galaxies can provide important insight into the spatial distribution and variability of emission in compact nuclei. SIM — the Space Interferometry Mission — will be the first optical interferometer capable of precision astrometry on quasars. Although it is not expected to resolve the emission, it will be very sensitive to astrometric shifts, for objects as faint as R magnitude 20. In its wide-angle mode, SIM will yield 4 microarcsecond absolute positions, and proper motions to about 2 microarcsecond/yr. A variety of AGN phenomena are expected to be visible to SIM on these scales, including time and spectral dependence in position offsets between accretion disk and jet emission. SIM should be able to answer the following questions. Does the most compact optical emission from an AGN come from an accretion disk or from a relativistic jet? Do the relative positions of the radio core and optical photocentre of quasars used for the reference frame tie change on the timescales of their photometric variability? Do the cores of galaxies harbour binary supermassive black holes remaining from galaxy mergers? In this paper we briefly describe the operation of SIM and the quasar measurements it will make. We estimate the size of the astrometric signatures which may be expected, and we discuss prospects for using astrometry as a fundamental tool for understanding quasar nuclei.
Optical astrometry of quasars and active galaxies can provide key information on the spatial distribution and variability of emission in compact nuclei. The Space Interferometry Mission (SIM PlanetQuest) will have the sensitivity to measure a significant number of quasar positions at the microarcsecond level. SIM will be very sensitive to astrometric shifts for objects as faint as V=19. A variety of AGN phenomena are expected to be visible to SIM on these scales, including time and spectral dependence in position offsets between accretion disk and jet emission. These represent unique data on the spatial distribution and time dependence of quasar emission. It will also probe the use of quasar nuclei as fundamental astrometric references. Comparisons between the time-dependent optical photocenter position and VLBI radio images will provide further insight into the jet emission mechanism. Observations will be tailored to each specific target and science question. SIM will be able to distinguish spatially between jet and accretion disk emission; and it can observe the cores of galaxies potentially harboring binary supermassive black holes resulting from mergers.
A nozzle expansion into a vacuum chamber was used to investigate the evaporation of highly superheated liquid jets. The large molar specific heat of fluids with high molecular complexity — in this case C6F14 — is responsible for the new phenomena reported here. A model was developed to describe the basic physical effects. A cubic equation of state was used to describe the thermodynamic properties of the fluid. The evaporation was modelled as a sonic deflagration followed by an axisymmetric supersonic expansion. As in the case of hypersonic gas jets the final state is reached by a normal shock. For sufficiently high temperatures and expansion ratios a complete adiabatic evaporation of the liquid was found. At even higher temperatures the liquid evaporates completely within a rarefaction discontinuity. The predictions of the model are in good agreement with the experimental results.
The turbulent flow in a duct with an abrupt increase in its cross-sectional area is very unstable and exhibits strong oscillations. Such a flow is investigated experimentally using a simple device — a pipe–collar nozzle, composed of a convergent nozzle and a pipe lengthened by a collar with an enlarged cross-section. The oscillating flow characteristics are considered over a wide range of flow velocities including both subsonic and transonic flow regimes. Two modes of symmetric and one of asymmetric oscillations are distinguished. For the first mode of symmetric oscillation the jet is separated in each phase of the oscillation cycle, whereas for the second the jet alternately separates and reattaches to the collar wall. Both modes of symmetric oscillations are controlled by shear-layer instability of the collar flow. For low velocities and short collars the oscillation is also affected by the organ-pipe resonance in the preceding pipe. The asymmetric oscillation appears at relatively large flow Mach numbers. This mode exhibits a radial resonance of the jet.
The splitting of a single pressure discontinuity into a propagating two-wave system is studied for the case of saturated-liquid expansion (liquid-evaporation wave splitting) and vapour compression (vapour-condensation wave splitting). Experimental results from the Max-Planck-Institut für Strömungsforschung and from Rensselaer Polytechnic Institute show that splitting occurs in test fluids of large molar heat capacity, such as iso-octane (Cv0/R ≈ 37). Each of the two forms of splitting results in a single-phase forerunner wave carrying a pressure discontinuity followed by a phase-change wave, also with a pressure discontinuity. The thermodynamic state between the forerunner wave and the phase-change wave is metastable (supersaturated liquid or vapour). The waves are quantitatively described by systems of adiabats, e.g. shock adiabats. It appears that nucleation processes are predominantly homogeneous.
In vapour-compression shock-wave splitting, a combined wave (liquefaction shock) splits into discrete forerunner and condensation waves at a triple point, the intersection of a liquefaction shockfront, forerunner shock and condensation discontinuity: such a point occurs just at critical supersaturation (i.e. the Wilson-line state), where condensation is spontaneous and immediate. For shock waves that produce a metastable state of subcritical supersaturation, condensation is delayed, that is, the condensation discontinuity propagates more slowly; for a split-shock system, the condensation discontinuity propagates subsonically. The pressure amplitude of a real split-shock system is much larger than that predicted by an equilibrium model.
In liquid-evaporation wave splitting, the forerunner wave is an acoustic expansion wave and the second wave an evaporation wave with a propagation velocity approximately determined by the Chapman-Jouguet condition for deflagration. Such evaporation wavefronts are increasingly distinct as the temperature approaches the critical-point value. The evaporation rates across the wavefront are comparable to those found in vapour explosions.
The effect of uniform wall suction on the structure of turbulence in a fully established turbulent pipe flow has been measured, with special attention to the critical layers close to the wall. Uniform suction was introduced into a pipe flow with a Reynolds number of 17250 by means of a porous-walled section 2·2 diameters in length with very fine perforations. The effect of suction on the turbulent energy balance was then measured over the entire cross-section at four axial locations. The results indicate the following.
The amplitudes of the three principal velocity fluctuation components are reduced by suction, but to differing degrees. Moreover, the effects of suction on the amplitudes of these fluctuations develop at differing rates such that the x-wise components are first affected, then the r-wise and lastly the ϕ-wise components.
The suction-induced perturbation in the turbulent structure propagates from the wall to the pipe centre-line with a velocity approximately equal to the friction velocity Uτ.
Even with very small rates of fluid extraction the maxima of the terms in the turbulent energy balance occurring close to the wall are drastically reduced. Nevertheless there is no tendency for the location of these maxima to move towards the wall.
The general reduction of the level of turbulent energy across the entire section is due to transport of this energy by the augmented mean radial velocity towards the wall, where it is dissipated since the boundary condition inhibits the passage of turbulent energy through the wall.
A two-dimensional configuration has been investigated in which air flows through a convergent nozzle and expands abruptly into a rectangular duct of larger cross-section which terminates in a plenum chamber. Three different types of oscillation have been observed in the downstream duct. At low plenumchamber pressures an oscillation occurs towards the exit of the duct as the boundary layer of the flow becomes alternately separated and attached. At increasing plenum pressure a shock-pattern oscillation takes place in which a change from a normal shock to oblique shocks occurs during a cycle. At still greater plenum pressures a base-pressure oscillation occurs which influences the entire duct flow downstream of the abrupt change in cross-section. The amplitudes of the oscillation can be as high as 10% of the rest state, and the frequency of the base-pressure oscillations can be predicted approximately from one-dimensional gasdynamic theory.
The unsteady duct phenomena have been studied by synchronizing instantaneous pressures measured by quartz pressure transducers with interferograms obtained with a Mach–Zehnder interferometer.
We describe the next set of experiments proposed in the U.S. Heavy Ion Fusion Virtual National Laboratory, the so-called Integrated Beam Experiment (IBX). The purpose of IBX is to investigate in an integrated manner the processes and manipulations necessary for a heavy ion fusion induction accelerator. The IBX experiment will demonstrate injection, acceleration, compression, bending, and final focus of a heavy ion beam at significant line charge density. Preliminary conceptual designs are presented and issues and trade-offs are discussed. Plans are also described for the step after IBX, the Integrated Research Experiment (IRE), which will carry out significant target experiments.
PKS 1934–638 is an archetypal GPS source, peaking at 1.4 GHz and exhibits almost no flux density variability. VLBI images at frequencies of .843, 2.3, 4.8, & 8.4 were made with the southern hemisphere VLBI array and they reveal that the source is a 42 mas compact double. There is no detectable change in separation over the last 20 years, yielding an upper limit of ~ 0.03c ± 0.2c on any expansion velocity. The spectral shapes of the two components are remarkably similar, despite indications of finer structure on longer baselines. Magnetic field calculations indicate fields of a few mGauss and the results are consistent with equipartition.
Two important factors for understanding the physical nature of compact steep spectrum (CSS) radio sources are determining the correct radio morphological classification of these objects together with their characteristics in wavebands different from the radio (Fanti et al. 1995, A&A, 302, 317). Seven CSS sources (linear dimensions < 30kpc for Ho = 50 kms–1Mpc–1 and α > 0.5, S ≃ v–α) have been found in a complete sample of strong southern radio sources. This group of CSS sources is particularly interesting because some optical and X-ray information is already available as part of a more general study of southern radio sources (Morganti et al. & Siebert et al. these Proceedings). The spectra of all the sources were presented in Tadhunter et al. (1993, MNRAS, 263, 999.) Here we present VLBI observations for three of these sources (0252-71, 1306-09 and 1814-63). The remaining four have already been imaged with VLBI (King et al. these Proceedings).
The Very High Frequency (70 MHz) PECVD has recently proven its ability to produce Amorphous silicon with high deposition rates (10 Å/s) without affecting the quality of the Material. A comparative study of the optoelectronic properties of undoped silicon carbon alloys produced by Very High Frequency and by conventional RF (13.56 MHz) is carried out. Conductivity, infrared absorption, optical transmission and deep defect densities via PDS and ESR have been Measured. Deposition parameters under study aie methane fraction and hydrogen dilution. In contrast to conventional PECVD, we observe for VHF depositions an increase of the deposition rate with the addition of Methane. Larger energy gap and smaller Urbach energy values seem to indicate a better incorporation of carbon in the VHF case. A study of the degradation induced by light is also presented.
Results of zeta potential measurements by electroosmosis with site-specific waters and sedimentary rocks from strata overlying the Gorleben salt dome are given and compared with sorption data of radionuclides obtained in batch experiments. It is shown that zeta potentials of sediment-groundwater systems in spite of being lower than the corresponding surface potentials are a sensitive indicator of interface reactions depending on the type of the sediment, ionic strength of waters, pH and temperature. Moreover, it is demonstrated that sorption data and, additionally, the influence of various parameters can often be understood by taking into account variable electrostatic forces between charged surfaces and nuclide species.
Microcrystalline silicon films deposited by plasma methods have an optical absorption for photon energies above 2.0 eV lower than a-Si:H films and can be efficiently doped with boron or phosphorus. The most widely used deposition technique is the 13.56 MHz PECVD. However quite recently µc-Si:H films were grown at high deposition rates by the 70 MHz PECVD. In this work the authors report on a comparison between µc-Si:H films deposited by both 70 MHz and 13.56 MHz techniques. Particular attention has been devoted to differences and similarities between structural, compositional and electrical properties of the films deposited with the two systems.