We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In a recent paper Fay and Philippe [ESAIM: PS 6 (2002) 239–258] proposed a goodness-of-fit test for long-range dependent processes which uses the logarithmic contrast as information measure. These authors established asymptotic normality under the null hypothesis and local alternatives. In the present note we extend these results and show that the corresponding test statistic is also normally distributed under fixed alternatives.
We consider the problem of maximizing the sum of squares of the leading coefficients of polynomials (where Pj(x) is a polynomial of degree j) under the restriction that the sup-norm of is bounded on the interval [ −b, b] (b>0). A complete solution of the problem is presented using duality theory of convex analysis and the theory of canonical moments. It turns out, that contrary to many other extremal problems the structure of the solution will depend heavily on the size of the interval [ −b, b].
In the random walk whose state space is a subset of the non-negative integers explicit representations for the generating functions of the n-step transition and the first return probabilities are obtained. These representations involve the Stieltjes transform of the spectral measure of the process and the corresponding orthogonal polynomials. Several examples are given in order to illustrate the application of the results.
Krafft and Schaefer [14] considered a two-parameter Ehrenfest urn model and found the n-step transition probabilities using representations by Krawtchouk polynomials. For a special case of the model Palacios [17] calculated some of the expected first-passage times. This note investigates a generalization of the two-parameter Ehrenfest urn model where the transition probabilities pi,i+1 and pi,i+1 are allowed to be quadratic functions of the current state i. The approach used in this paper is based on the integral representations of Karlin and McGregor [9] and can also be used for Markov chains with an infinite state space.
Let·p denote the p-norm on . For n points drawn independently and uniformly from the unit d-cube, we obtain the limit distribution of the largest nearest-neighbour link (with respect to | · |p) in the cases ; (2) d = 3, p = 1, 2, ∞and (3) 4, p =∞.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.