We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Racial and ethnic variations in antibiotic utilization are well-reported in outpatient settings but little is known about inpatient settings. Our objective was to describe national inpatient antibiotic utilization among children by race and ethnicity.
Methods:
This study included hospital visit data from the Pediatric Health Information System between 01/01/2022 and 12/31/2022 for patients <20 years. Primary outcomes were the percentage of hospitalization encounters that received an antibiotic and antibiotic days of therapy (DOT) per 1000 patient days. Mixed-effect regression models were used to determine the association of race-ethnicity with outcomes, adjusting for covariates.
Results:
There were 846,530 hospitalizations. 45.2% of children were Non-Hispanic (NH) White, 27.1% were Hispanic, 19.2% were NH Black, 4.5% were NH Other, 3.5% were NH Asian, 0.3% were NH Native Hawaiian/Other Pacific Islander (NHPI) and 0.2% were NH American Indian. Adjusting for covariates, NH Black children had lower odds of receiving antibiotics compared to NH White children (aOR 0.96, 95%CI 0.94–0.97), while NH NHPI had higher odds of receiving antibiotics (aOR 1.16, 95%CI 1.05–1.29). Children who were Hispanic, NH Asian, NH American Indian, and children who were NH Other received antibiotic DOT compared to NH White children, while NH NHPI children received more antibiotic DOT.
Conclusions:
Antibiotic utilization in children’s hospitals differs by race and ethnicity. Hospitals should assess policies and practices that may contribute to disparities in treatment; antibiotic stewardship programs may play an important role in promoting inpatient pharmacoequity. Additional research is needed to examine individual diagnoses, clinical outcomes, and drivers of variation.
The trace element selenium is known to protect against oxidative damage which is known to contribute to cognitive impairment with ageing (1,2). The aim of this study was to explore the association between selenium status (serum selenium and selenoprotein P (SELENOP)) and global cognitive performance at baseline and after 5 years in 85-year-olds living in the Northeast of England.
Serum selenium and SELENOP concentrations were measured at baseline by total reflection X-ray fluorescence (TXRF) and enzyme-linked immunosorbent assay (ELISA), respectively, in 757 participants from the Newcastle 85+ study. Global cognitive performance was assessed using the Standardized Mini-Mental State Examination (SMMSE) where scores ≤25 out of 30 indicated cognitive impairment. Logistic regressions explored the associations between selenium status and global cognition at baseline. Linear mixed models explored associations between selenium status and global cognition prospectively after 5 years. Covariates included sex, body mass index, physical activity, high sensitivity C-reactive protein, alcohol intake, self-rated health, medications and smoking status.
At baseline, in fully adjusted models, there was no increase in odds of cognitive impairment with serum selenium (OR 1.004, 95% CI 0.993-1.015, p = 0.512) or between SELENOP (OR 1.006, 95% CI 0.881-1.149, p = 0.930). Likewise, over 5 years, in fully adjusted models there was no association between serum selenium and cognitive impairment (β 7.20E-4 ± 5.57E-4, p = 0.197), or between SELENOP and cognitive impairment (β 3.50E-3 ± 6.85E-3, p = 0.610).
In this UK cohort of very old adults, serum selenium or SELENOP was not associated with cognitive impairment at baseline and 5 years. This was an unexpected finding despite SELENOP’s key role in the brain and the observed associations in other studies. Further research is needed to explore the effect of selenium on global cognition in very old adults.
Small-angle X-ray scattering (SAXS) has been widely used as a microstructure characterization technology. In this work, a fully connected dense forward network is applied to inversely retrieve the mean particle size and particle distribution from SAXS data of samples dynamically compressed with high-power lasers and probed with X-ray free electron lasers. The trained network allows automatic acquisition of microstructure information, performing well in predictions on single-species nanoparticles on the theoretical model and in situ experimental data. We evaluate our network by comparing it with other methods, revealing its reliability and efficiency in dynamic experiments, which is of great value for in situ characterization of materials under high-power laser-driven dynamic compression.
OBJECTIVES/GOALS: Vanishing White Matter Disease (VWM), is a childhood neurodegenerative leukodystrophy that presents with motor deficits, neurologic decline, and seizures leading to death.There are no treatments. Herein we investigate adeno-associated virus serotype 9 (AAV9) gene addition therapy for VWM. METHODS/STUDY POPULATION: To serve as a baseline for disease correction, we characterized the severe VWM Eif2b5I98M murine model with clinically relevant readouts including motor function, gait mapping and myelin loss through magnetic resonance imaging (MRI). Molecular characterization through the identification of biomarkers was also investigated. To provide targeted disease correction, we designed four gene replacement constructs to drive the rapeutic EIF2B5 expression in astrocytes—a critical cell type for VWM pathology. We are currently evaluating our AAV vectors in two murine VWM models, Eif2b5R191H and Eif2b5I98M, and are monitoring disease progression using traditional and clinically relevant readouts. RESULTS/ANTICIPATED RESULTS: The I98M mice display significant mobility loss, ataxic gait, and demyelination. Molecular characterization also indicates that the integrated stress response is significantly dysregulated, supporting the classic VWM phenotype. Our previous biodistribution study confirmed our ability to efficiently target astrocytes using varying iterations—including one novel—of the glial fibrillary acidic protein (GFAP) promoter. Our data suggests that targeting astrocytes with gene addition delays disease onset, partially rescues motor function, and attenuates myelin loss. Survival of the AAV9-gfaABC(1)D-EIF2B5 treated I98M mice is also significantly increased (p<0.0001), currently with a 2-fold extension in life expectancy. DISCUSSION/SIGNIFICANCE: Overall, we anticipate emergence of a lead astrocyte-targeted gene therapy candidate in which the data will be strengthened through the evaluation of clinically relevant measures in two murine models of disease, allowing fortimely translation to the clinic.
Specialty on-call clinicians cover large areas and complex workloads. This study aimed to assess clinical communication using the mixed-reality HoloLens 2 device within a simulated on-call scenario.
Method
This study was structured as a randomised, within-participant, controlled study. Thirty ENT trainees used either the HoloLens 2 or a traditional telephone to communicate a clinical case to a consultant. The quality of the clinical communication was scored objectively and subjectively.
Results
Clinical communication using the HoloLens 2 scored statistically higher than telephone (n = 30) (11.9 of 15 vs 10.2 of 15; p = 0.001). Subjectively, consultants judged more communication episodes to be inadequate when using the telephone (7 of 30) versus the HoloLens 2 (0 of 30) (p = 0.01). Qualitative feedback indicates that the HoloLens 2 was easy to use and would add value during an on-call scenario with remote consultant supervision.
Conclusion
This study demonstrated the benefit that mixed-reality devices, such as the HoloLens 2 can bring to clinical communication through increasing the accuracy of communication and confidence of the users.
The Mini International Neuropsychiatric Interview 7.0.2 (MINI-7) is a widely used tool and known to have sound psychometric properties; but very little is known about its use in low and middle-income countries (LMICs). This study aimed to examine the psychometric properties of the MINI-7 psychosis items in a sample of 8609 participants across four countries in Sub-Saharan Africa.
Methods
We examined the latent factor structure and the item difficulty of the MINI-7 psychosis items in the full sample and across four countries.
Results
Multiple group confirmatory factor analyses (CFAs) revealed an adequate fitting unidimensional model for the full sample; however, single group CFAs at the country level revealed that the underlying latent structure of psychosis was not invariant. Specifically, although the unidimensional structure was an adequate model fit for Ethiopia, Kenya, and South Africa, it was a poor fit for Uganda. Instead, a 2-factor latent structure of the MINI-7 psychosis items provided the optimal fit for Uganda. Examination of item difficulties revealed that MINI-7 item K7, measuring visual hallucinations, had the lowest difficulty across the four countries. In contrast, the items with the highest difficulty were different across the four countries, suggesting that MINI-7 items that are the most predictive of being high on the latent factor of psychosis are different for each country.
Conclusions
The present study is the first to provide evidence that the factor structure and item functioning of the MINI-7 psychosis vary across different settings and populations in Africa.
This chapter examines the neurobehavioural impacts in adults of both starvation (food restriction/cessation) and energy restriction for life extension. Section 8.2 covers animals, finding that restriction causes hippocampal damage and stress responses. Section 8.3 covers humans. Short-term fasting (<1 week) has limited cognitive effects, primarily increasing attention to food. Long-term fasting (weeks-to-years) has been studied naturalistically (e.g., famines, hunger strikes) and in the lab (e.g., Minnesota starvation study). Findings are convergent, with dramatic increases in appetite, low mood and egocentricity. The neural basis of these effects can be studied indirectly in people with anorexia nervosa, although this is complicated by pre-existing brain changes that may dispose to this disease. The impacts of cachexia and aging are also examined, alongside the longer-term impacts of food restriction post-recovery. Part three examines the animal and human energy restriction literature. While lifespan extension can occur in small mammals, the evidence in primates and humans for beneficial effects is equivocal.
This chapter examines acute and chronic dietary neurotoxins. One group of acute neurotoxins are plant alkaloids, with ergot poisoning from rye the most notable. Others include the marine neurotoxins, which cause hundreds of thousands of poisonings from seafood that have ingested toxic diatoms/dinoflagellates (e.g., amnestic shellfish poisoning) and from seafood itself (e.g., fugu). Acute neurotoxins also arise from processing, flavourants (e.g., absinthe) and contaminants (e.g., milk sickness). Chronic neurotoxins are diverse, common and sometimes lethal. Prions are one group, in the form of kuru, and mad cow disease. Another is BMAA found in cycad seeds, leading to parkinsonian-like diseases. Reliance on cassava can be problematic if poorly prepared, alongside many bush foods eaten during famine (e.g., grass pea and lathyrism). Lead, aluminium, arsenic and especially mercury can all be ingested, with some tragic examples (e.g., Minamata). Interactions between neurotoxins, vulnerability from poor nutrition and the link to neurodegenerative diseases are also considered.
This chapter focusses on addiction to food-related drugs and whether food can be thought of as a drug. Section 7.2 considers alcohol, its behavioural effects and how these might arise in the brain. Consequences of chronic use on brain and behaviour are also examined, both for adult neurological sequelae and for foetal brain development. Section 7.3 explores caffeine and theobromine, the former being the world’s most widely used drug. Whether caffeine’s cognitive-behavioural benefits arise from it ameliorating withdrawal in chronic users or whether it has some cognitive enhancing properties in everyone is examined. The biological basis of these cognitive-behavioural effects are also reviewed, including how caffeine may affect striatal dopamine. Section 7.5 examines food addiction. A number of conceptual issues are discussed, namely obesity as an endpoint of addiction, whether there can be addiction to a biological need, and the appropriateness of parallels to substance abuse and behavioural models of addiction.
This chapter concerns neuroprotective diets, and the use of particular diets and dietary components as an intervention. The first section examines the Mediterranean diet, with its beneficial effects – as prevention and intervention – on cognitive performance, mental health and neurodegeneration. The second section explores the DASH (dietary approaches to stop hypertension) diet, which has shown promise across the same set of conditions as the Mediterranean diet, and with probably a similar set of common mechanisms (e.g., reductions in inflammation and oxidative stress, plus benefits to the cardiovascular system). The third section looks at the ketogenic diet and its variants, with its high fat to carbohydrate ratio, originally and successfully developed for paediatric epilepsy, and its more recent use in other conditions (e.g., multiple sclerosis, brain tumours). The final part of the chapter reviews single nutrients, these being either examples of polyphenols or omega-3 fatty acids, with research focussing on mental health, aging and neurodegeneration.
This chapter concerns neuro-cognitive development, from conception through to childhood. Breastfeeding has been studied extensively using cross-sectional methods, finding cognitive benefits. However, after controlling for confounding variables and with better designs, beneficial effects are at best small. Maternal undernutrition can result in adverse neurodevelopmental outcomes (e.g., enhanced risk of schizophrenia). Undernutrition during infancy and early childhood causes stunting – inadequate growth for age. Stunting is common (around 500 million children worldwide) and is linked to multiple cognitive impairments, imposing lifelong costs on the individual. As stunting involves a complex interaction between nutrition, brain and environment, dietary remediation alone may not be that effective. Maternal overnutrition is also associated with adverse neurodevelopmental outcomes, but here it is unclear if this relates to poor diet quality, maternal body fat or socio-economic factors. Finally, there are a wide range of specific nutritional deficiencies that affect neurocognitive development, many having lifelong impacts (e.g., thiamine, folate iron, iodine).
This chapter examines the impacts of consuming a Western-style diet (WS-diet), rich in saturated fat, sugar and salt. Animal and human data convincingly show that a WS-diet causes hippocampal and prefrontal cortical impairment. Determining which component of a WS-diet is responsible is not currently clear. Several mechanisms may underpin these adverse effects on the brain: (1) reductions in neurotrophic factors; (2) neuroinflammation; (3) oxidative stress; (4) increased stress responsivity; (5) selective vulnerabilities in the hippocampal blood-brain barrier; and (6) changes to gut microbiota. The last one is intriguing as gut microbiota changes may impair the gut endothelial barrier allowing gut material to leak into the bloodstream, subsequently affecting the brain. Eating a WS-diet has also been linked to poorer mental health (anxiety/depression), it may exacerbate multiple sclerosis, and increased risk for Alzheimer’s and Parkinson’s disease. Finally, obesity may be a consequence of these adverse neural changes, leading to appetitive dysregulation and overeating.