In this paper we prove that the automorphism group A(N) of a free nilpotent group N of class 2 and finite rank n is complete, except when n is 1 or 3. Equivalently, the centre of A(N) is trivial and every automorphism of A(N) is inner, provided n ≠ 1 or 3. When n = 3, A(N) has an our automorphism of order 2, so A(A(N)) is a split extension of A(N) by
. In this case, A(A(N)) is complete. These results provide some evidence supporting a conjecture of Gilbert Baumslag that the sequence

becomes periodic if N is a finitely generated nilpotent group.