We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study investigates the impact of primary care utilisation of a symptom-based head and neck cancer risk calculator (Head and Neck Cancer Risk Calculator version 2) in the post-coronavirus disease 2019 period on the number of primary care referrals and cancer diagnoses.
Methods
The number of referrals from April 2019 to August 2019 and from April 2020 to July 2020 (pre-calculator) was compared with the number from the period January 2021 to August 2022 (post-calculator) using the chi-square test. The patients’ characteristics, referral urgency, triage outcome, Head and Neck Cancer Risk Calculator version 2 score and cancer diagnosis were recorded.
Results
In total, 1110 referrals from the pre-calculator period were compared with 1559 from the post-calculator period. Patient characteristics were comparable for both cohorts. More patients were referred on the cancer pathway in the post-calculator cohort (pre-calculator patients 51.1 per cent vs post-calculator 64.0 per cent). The cancer diagnosis rate increased from 2.7 per cent in the pre-calculator cohort to 3.3 per cent in the post-calculator cohort. A lower rate of cancer diagnosis in the non-cancer pathway occurred in the cohort managed using the Head and Neck Cancer Risk Calculator version 2 (10 per cent vs 23 per cent, p = 0.10).
Conclusion
Head and Neck Cancer Risk Calculator version 2 demonstrated high sensitivity in cancer diagnosis. Further studies are required to improve the predictive strength of the calculator.
Clay particle aggregation affects a number of environmental processes, such as contaminant sorption/desorption, particle movement/deposition, and sediment structure and stability, yet factors that control clay aggregation are not well understood. This study was designed to investigate how microbial reduction of Fe(III) in clay structure, a common process in soils and sediments, affects clay-particle aggregation. Microbial Fe(III) reduction experiments were conducted with Shewanella putrefaciens CN32 in bicarbonate buffer with structural Fe (III) in nontronite as the sole electron acceptor, lactate as the sole electron donor, and AQDS as an electron shuttle. Four size fractions of nontronite (D5–D95 of 0.12–0.22 µm, 0.41–0.69 µm, 0.73–0.96 µm and 1.42–1.78 µm) were used to evaluate size-dependent aggregation kinetics. The extent of Fe(III) bioreduction and the amount of exopolysaccharide (EPS), a major biopolymer secreted by CN32 cells during Fe(III) bioreduction, were measured with chemical methods. Nontronite particle aggregation was determined by photon correlation spectroscopy and scanning electron microscopy. The maximum extent of Fe(III) bioreduction reached 36% and 24% for the smallest and the largest size fractions, respectively. Within the same time duration, the effective diameter, measured at 95% percentile (D95), increased by a factor of 43.7 and 7.7 for these two fractions, respectively. Because there was production of EPS by CN32 cells during Fe(III) reduction, it was difficult to assess the relative role of Fe(III) bioreduction and EPS bridging in particle aggregation. Thus, additional experiments were performed. Reduction of Fe(III) by dithionite was designed to examine the effect of Fe(III) reduction, and pure EPS isolated from CN32 cells was used to examine the effect of EPS. The data showed that both Fe(III) reduction and EPS were important in promoting clay mineral aggregation. In natural environments, the relative importance of these two factors may be dependent on local conditions. These results have important implications for understanding factors in controlling clay particle aggregation in natural environments.
Shewanella putrefaciens CN32 reduces Fe(III) within two illites which have different properties: the Fithian bulk fraction and the <0.2 µm fraction of Muloorina. The Fithian illite contained 4.6% (w/w) total Fe, 81% of which was Fe(III). It was dominated by illite with some jarosite (∼32% of the total Fe(III)) and goethite (11% of the total Fe(III)). The Muloorina illite was pure and contained 9.2% Fe, 93% of which was Fe(III). Illite suspensions were buffered at pH 7 and were inoculated with CN32 cells with lactate as the electron donor. Select treatments included anthraquinone-2,6-disulfonate (AQDS) as an electron shuttle. Bioproduction of Fe(II) was determined by ferrozine analysis. The unreduced and bioreduced solids were characterized by Mössbauer spectroscopy, X-ray diffraction and transmission electron microscopy. The extent of Fe(III) reduction in the bulk Fithian illite was enhanced by the presence of AQDS (73%) with complete reduction of jarosite and goethite and partial reduction of illite. Mössbauer spectroscopy and chemical extraction determined that 21–25% of illite-associated Fe(III) was bioreduced. The extent of bioreduction was less in the absence of AQDS (63%) and only jarosite was completely reduced with partial reduction of goethite and illite. The XRD and TEM data revealed no significant illite dissolution or biogenic minerals, suggesting that illite was reduced in the solid state and biogenic Fe(II) from jarosite and goethite was either released to aqueous solution or adsorbed onto residual solid surfaces. In contrast, only 1% of the structural Fe(III) in Muloorina illite was bioreduced. The difference in the extent and rate of bioreduction between the two illites was probably due to the difference in layer charge and the total structural Fe content between the Fithian illite (0.56 per formula) and Muloorina illite (0.87). There may be other factors contributing to the observed differences, such as expandability, surface area and the arrangements of Fe in the octahedral sheets. The results of this study have important implications for predicting microbe-induced physical and chemical changes of clay minerals in soils and sediments.
Clay minerals impart important chemical properties to soils, in part, by virtue of changes in the redox state of Fe in their crystal structures. Therefore, measurement of Fe(III)/Fe(II) and partitioning of Fe(II) in different reactive sites in clay minerals (during biological and chemical Fe(III) reduction) is essential to understand their role and their relative reactivity in terms of reduction and immobilization of heavy metal contaminants such as technetium. This study had three objectives: (1) to understand the degree of dissolution of nontronite (Fe-rich smectite) as a result of chemical and biological reduction of Fe(III) in the structure; (2) to quantify partitioning of chemically and biologically produced Fe(II) into different reactive sites in reduced nontronite, including aqueous Fe2+, ammonium chloride-extractable Fe(II) (mainly from the ion-exchangeable sites, denoted as ${\rm{Fe}}{\left( {{\rm{II}}} \right)_{{\rm{N}}{{\rm{H}}_4}{\rm{Cl}}}}$), sodium acetate-extractable Fe(II) (mainly from the surface complexation sites, denoted as Fe(II)acetate), and structural Fe(II) (denoted as Fe(II)str); and (3) to evaluate the reactivity of these Fe(II) species in terms of Tc(VII) reduction. Chemical and biological reduction of Fe(III) in nontronite (NAu-2) was performed, and reduced nontronite samples with different extents of Fe(III) reduction (1.2–71%) were prepared. The extent of reductive dissolution was measured as a function of the extent of Fe(III) reduction. Our results demonstrated that chemically and biologically produced Fe(II) in NAu-2 may be accommodated in the NAu-2 structure if the extent of Fe(III) reduction is small (< ∼30%). When the extent of reduction was >∼30%, dissolution of nontronite occurred with a corresponding decrease in crystallinity of residual nontronite. The Fe(II) produced was available for partitioning into four species: ${\rm{Fe}}_{\left( {{\rm{ab}}} \right)}^{2 + }$, Fe(II)acetate, ${\rm{Fe}}{\left( {{\rm{II}}} \right)_{{\rm{N}}{{\rm{H}}_4}{\rm{Cl}}}}$, and Fe(II)str. The increase in Fe(II)acetate during the early stages of Fe(III) reduction indicated that the Fe(II) released had the greatest affinity for the surface-complexation sites, but this site had a limited capacity (∼60 µmol of Fe(II)/g of NAu-2). The subsequent increase in ${\rm{Fe}}{\left( {{\rm{II}}} \right)_{{\rm{N}}{{\rm{H}}_4}{\rm{Cl}}}}$ indicated that the released Fe(II) partitioned into the exchangeable sites once the amount of Fe at the surface-complexation sites reached half of its maximum site capacity. The fraction of Fe(II)str decreased concomitantly, as a result of Fe(II) release from the NAu-2 structure, from 100% when the extent of Fe(III) reduction was <30% to nearly 65% when the extent of Fe(III) reduction reached 71%. The Fe(II)acetate and Fe(II)str exhibited greater reactivity in terms of Tc(VII) reduction than the ${\rm{Fe}}{\left( {{\rm{II}}} \right)_{{\rm{N}}{{\rm{H}}_4}{\rm{Cl}}}}$. Clearly, the surface-complexed and structural Fe(II) are the desirable species when reduced clay minerals are used to reduce and immobilize soluble heavy metals in contaminated groundwater and soils. These results have important implications for understanding microbe—clay mineral interactions and heavy metal immobilization in clay-rich natural environments.
This study estimated the treatment cost of pediatric abdominal tuberculosis that potentially needs surgical treatment in India. Data were collected from 38 in-patient children at Christian Medical Hospital, Ludhiana as part of a clinical study conducted to establish the patterns of presentation and outcomes of abdominal tuberculosis in an Indian setting. A bottom-up approach was used to estimate the costs from a healthcare provider perspective, and a generalized linear model (GLM) was run to find variables that had an impact on the costs. Costs were reported in international dollars ($) and India Rupees (INR). The results show that the average direct cost was $3095.00 (standard deviation [SD]: 3480.82) or 68,065.13 INR (SD: 76,539.69). The GLM results established that duration of treatment and surgical treatment were significantly associated with higher costs. Efforts of eliminating the condition should be strengthened.
The thirteenth-century allegorical dream vision, the Roman de la Rose, transformed how medieval literary texts engaged with philosophical ideas. Written in Old French, its influence dominated French, English and Italian literature for the next two centuries, serving in particular as a model for Chaucer and Dante. Jean de Meun's section of this extensive, complex and dazzling work is notable for its sophisticated responses to a whole host of contemporary philosophical debates. This collection brings together literary scholars and historians of philosophy to produce the most thorough, interdisciplinary study to date of how the Rose uses poetry to articulate philosophical problems and positions. This wide-ranging collection demonstrates the importance of the poem for medieval intellectual history and offers new insights into the philosophical potential both of the Rose specifically and of medieval poetry as a whole.
This paper presents the results of the work of the new field initiative launched by the British Museum at the Darband-i Rania pass in the Kurdistan Region of Iraq. The pass is located at the northeastern corner of Lake Dokan, where, though now subsumed into the lake, the Lower Zab flows from the Peshdar into the Rania Plain. It is a strategic location on a major route from Mesopotamia into Iran, and control of both the road and the river must always have been important. The aim of the work, which commenced in autumn of 2016, is to explore a cluster of sites that commanded the pass, with a particular focus on the first millennium b.c. Excavation is being carried out principally at two sites: Qalatga Darband, a large fortified site at the western end of the pass, and Usu Aska, a fort inside the pass itself. The occupations of these two sites are predominantly Parthian and Assyrian respectively. Smaller operations have also been carried out at Murad Rasu, a multi-period site situated on a headland across the waters on the southern shore of Lake Dokan. The results have included the discovery at Qalatga Darband of a monumental complex built of stone and roofed with terracotta roof tiles containing the smashed remains of Hellenistic statuary. Other features indicative of Hellenistic material culture are Mediterranean-type oil-presses and Corinthian column bases and capitals. At Usu Aska remains are being uncovered of an Assyrian fortification of massive proportions.