We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper introduces type P web supercategories. They are defined as diagrammatic monoidal ${\mathbb {k}}$-linear supercategories via generators and relations. We study the structure of these categories and provide diagrammatic bases for their morphism spaces. We also prove these supercategories provide combinatorial models for the monoidal supercategory generated by the symmetric powers of the natural module and their duals for the Lie superalgebra of type P.
Let be a classical Lie superalgebra and let ℱ be the category of finite-dimensional -supermodules which are completely reducible over the reductive Lie algebra . In [B. D. Boe, J. R. Kujawa and D. K. Nakano, Complexity and module varieties for classical Lie superalgebras, Int. Math. Res. Not. IMRN (2011), 696–724], we demonstrated that for any module M in ℱ the rate of growth of the minimal projective resolution (i.e. the complexity of M) is bounded by the dimension of . In this paper we compute the complexity of the simple modules and the Kac modules for the Lie superalgebra . In both cases we show that the complexity is related to the atypicality of the block containing the module.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.